Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Dynamic ligand binding dictates partial agonism at a G protein–coupled receptor

Abstract

We present a new concept of partial agonism at G protein–coupled receptors. We demonstrate the coexistence of two functionally distinct populations of the muscarinic M2 receptor stabilized by one dynamic ligand, which binds in two opposite orientations. The ratio of orientations determines the cellular response. Our concept allows predicting and virtually titrating ligand efficacy, which opens unprecedented opportunities for the design of drugs with graded activation of the biological system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamic ligand binding dictates partial agonism: model, predictions and chemical tools.
Figure 2: The orientation ratio determines graded ligand efficacy.

Similar content being viewed by others

References

  1. Pierce, K.L., Premont, R.T. & Lefkowitz, R.J. Nat. Rev. Mol. Cell Biol. 3, 639–650 (2002).

    CAS  Google Scholar 

  2. Venkatakrishnan, A.J. et al. Nature 494, 185–194 (2013).

    Article  CAS  Google Scholar 

  3. Kenakin, T. Nat. Rev. Drug Discov. 1, 103–110 (2002).

    Article  CAS  Google Scholar 

  4. Kenakin, T. & Christopoulos, A. Nat. Rev. Drug Discov. 12, 205–216 (2013).

    Article  CAS  Google Scholar 

  5. Rosenbaum, D.M., Rasmussen, S.G.F. & Kobilka, B.K. Nature 459, 356–363 (2009).

    Article  CAS  Google Scholar 

  6. Warne, T. et al. Nature 469, 241–244 (2011).

    Article  CAS  Google Scholar 

  7. Swaminath, G. et al. J. Biol. Chem. 280, 22165–22171 (2005).

    Article  CAS  Google Scholar 

  8. Yao, X. et al. Nat. Chem. Biol. 2, 417–422 (2006).

    Article  CAS  Google Scholar 

  9. Kofuku, Y. et al. Nat. Commun. 3, 1045 (2012).

    Article  Google Scholar 

  10. Nikolaev, V.O., Hoffmann, C., Bünemann, M., Lohse, M.J. & Vilardaga, J.-P. J. Biol. Chem. 281, 24506–24511 (2006).

    Article  CAS  Google Scholar 

  11. Zürn, A. et al. Mol. Pharmacol. 75, 534–541 (2009).

    Article  Google Scholar 

  12. Kenakin, T. & Miller, L.J. Pharmacol. Rev. 62, 265–304 (2010).

    Article  CAS  Google Scholar 

  13. Nygaard, R. et al. Cell 152, 532–542 (2013).

    Article  CAS  Google Scholar 

  14. Black, J.W. & Leff, P. Proc. R. Soc. Lond. B Biol. Sci. 220, 141–162 (1983).

    Article  CAS  Google Scholar 

  15. Bruning, J.B. et al. Nat. Chem. Biol. 6, 837–843 (2010).

    Article  CAS  Google Scholar 

  16. Overington, J.P., Al-Lazikani, B. & Hopkins, A.L. Nat. Rev. Drug Discov. 5, 993–996 (2006).

    Article  CAS  Google Scholar 

  17. Antony, J. et al. FASEB J. 23, 442–450 (2009).

    Article  CAS  Google Scholar 

  18. Bock, A. et al. Nat. Commun. 3, 1044 (2012).

    Article  Google Scholar 

  19. Prilla, S., Schrobang, J., Ellis, J., Höltje, H.-D. & Mohr, K. Mol. Pharmacol. 70, 181–193 (2006).

    Article  CAS  Google Scholar 

  20. Schröder, R. et al. Nat. Biotechnol. 28, 943–949 (2010).

    Article  Google Scholar 

  21. Schröder, R. et al. Nat. Protoc. 6, 1748–1760 (2011).

    Article  Google Scholar 

  22. Kloeckner, J., Schmitz, J. & Holzgrabe, U. Tetrahedr. Lett. 51, 3470–3472 (2010).

    Article  CAS  Google Scholar 

  23. Dallanoce, C. et al. Bioorg. Med. Chem. 7, 1539–1547 (1999).

    Article  CAS  Google Scholar 

  24. Disingrini, T. et al. J. Med. Chem. 49, 366–372 (2006).

    Article  CAS  Google Scholar 

  25. Schrage, R. et al. Br. J. Pharmacol. 169, 357–370 (2013).

    Article  CAS  Google Scholar 

  26. Hoffmann, C. et al. Nat. Methods 2, 171–176 (2005).

    Article  CAS  Google Scholar 

  27. Jäger, D. et al. J. Biol. Chem. 282, 34968–34976 (2007).

    Article  Google Scholar 

  28. Ehlert, F.J. Mol. Pharmacol. 33, 187–194 (1988).

    CAS  PubMed  Google Scholar 

  29. May, L.T., Leach, K., Sexton, P.M. & Christopoulos, A. Annu. Rev. Pharmacol. Toxicol. 47, 1–51 (2007).

    Article  CAS  Google Scholar 

  30. Ehlert, F.J., Griffin, M.T., Sawyer, G.W. & Bailon, R. J. Pharmacol. Exp. Ther. 289, 981–992 (1999).

    CAS  PubMed  Google Scholar 

  31. Griffin, M.T., Figueroa, K.W., Liller, S. & Ehlert, F.J. J. Pharmacol. Exp. Ther. 321, 1193–1207 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Kepe for excellent technical assistance and Corning Inc. for their support on the Epic system. A.B. is a member of the graduate school Theoretical and Experimental Medicine at the University of Bonn. This work was funded by the Deutsche Forschungsgemeinschaft (DFG) by grants to K.M. (MO 821/2-1), U.H. (HO 1368/12-1), E.K. (KO 1583/3-1) and C.H. (SFB487 TPA1). B.C. is funded by the North-Rhine-Westphalia International Graduate Research School BIOTECH-PHARMA at the University of Bonn.

Author information

Authors and Affiliations

Authors

Contributions

A.B. conceived the project, developed the mathematical framework for dynamic ligands, conducted all of the binding experiments in live CHO-M2 and CHO-M2W422A cells and all of the [35S]GTPγS binding experiments and DMR assays and supervised experiments related to binding to membranes of CHO-hM2 cells and to characterization of the allosteric fragments. B.C. characterized the allosteric fragments in binding and functional assays and conducted binding assays of the X-6-phth series in membranes of CHO-hM2 cells. F.K. conducted binding assay of the X-6-naph series in membranes of CHO-hM2 cells. R.M. synthesized and characterized 8-naph. J.B. conducted FRET experiments. M.M. synthesized and characterized isox-8-naph. C.D. provided isox and isox-6-phth. D.K. conducted all of the [35S]GTPγS binding experiments to membranes of CHO-M2W422A cells. C.H. planned and supervised FRET experiments. U.H. planned and supervised chemical syntheses. C.T., M.D.A., C.H. and U.H. contributed to discussions. E.K. provided essential ideas. A.B. and K.M. made figures and wrote the manuscript. K.M. supervised the overall research.

Corresponding author

Correspondence to Klaus Mohr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–11 and Supplementary Tables 1–3. (PDF 1187 kb)

Supplementary Note 1

The binding model for dynamic ligands (PDF 428 kb)

Supplementary Note 2

Chemical syntheses and characterization (PDF 137 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bock, A., Chirinda, B., Krebs, F. et al. Dynamic ligand binding dictates partial agonism at a G protein–coupled receptor. Nat Chem Biol 10, 18–20 (2014). https://doi.org/10.1038/nchembio.1384

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1384

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research