Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution

Subjects

An Erratum to this article was published on 23 January 2018

An Addendum to this article was published on 25 July 2017

This article has been updated

Abstract

Understanding how materials that catalyse the oxygen evolution reaction (OER) function is essential for the development of efficient energy-storage technologies. The traditional understanding of the OER mechanism on metal oxides involves four concerted proton–electron transfer steps on metal-ion centres at their surface and product oxygen molecules derived from water. Here, using in situ18O isotope labelling mass spectrometry, we provide direct experimental evidence that the O2 generated during the OER on some highly active oxides can come from lattice oxygen. The oxides capable of lattice-oxygen oxidation also exhibit pH-dependent OER activity on the reversible hydrogen electrode scale, indicating non-concerted proton–electron transfers in the OER mechanism. Based on our experimental data and density functional theory calculations, we discuss mechanisms that are fundamentally different from the conventional scheme and show that increasing the covalency of metal–oxygen bonds is critical to trigger lattice-oxygen oxidation and enable non-concerted proton–electron transfers during OER.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electronic structures of Co-containing perovskite oxides.
Figure 2: Direct evidence of lattice oxygen oxidation involved in the OER of 18O-labelled perovskites.
Figure 3: pH-dependent OER activity on the RHE scale.
Figure 4: OER mechanisms with concerted and non-concerted proton–electron transfer.
Figure 5: Electrochemical oxygen intercalation into brownmillerite SrCoO3−δ followed by the OER.

Similar content being viewed by others

Change history

  • 23 June 2017

    In our Article we reported direct experimental evidence for the involvement of lattice oxygen redox chemistry in the perovskite catalysed oxygen evolution reaction (OER). We would like to cite an Article1 that was published prior to ours that readers should be aware of. The Article reports the OER activities of a series of cobaltite perovskites (La1−xSrxCoO3−δ), and its authors rationalize the high activities for materials with x > 0.4 through the participation of lattice oxygen in the OER mechanism, a hypothesis that is supported by density functional theory. References 1. Mefford, J. T. et al. Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts. Nat. Commun. 7, 11053 (2016).

  • 21 December 2017

    In the version of this Article originally published, a typographical error meant that the unit on the y-axis label of Fig. 3b incorrectly read 'mA cm-2disk'; it should have read 'mA cm-2oxide'. This has been now corrected in the online versions of the Article.

References

  1. Grimaud, A., Hong, W. T., Shao-Horn, Y. & Tarascon, J. M. Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121–126 (2016).

    CAS  PubMed  Google Scholar 

  2. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    CAS  Google Scholar 

  3. Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 1, 7 (2009).

    CAS  PubMed  Google Scholar 

  4. Seger, B. et al. 2-Photon tandem device for water splitting: comparing photocathode first versus photoanode first designs. Energy Environ. Sci. 7, 2397–2413 (2014).

    CAS  Google Scholar 

  5. Hansen, O., Seger, B., Vesborg, P. C. K. & Chorkendorff, I. A quick look at how photoelectrodes work. Science 350, 1030–1031 (2015).

    CAS  PubMed  Google Scholar 

  6. Castelli, I. E. et al. New cubic perovskites for one- and two-photon water splitting using the computational materials repository. Energy Environ. Sci. 5, 9034–9043 (2012).

    CAS  Google Scholar 

  7. Risch, M. et al. La0.8Sr0.2MnO3−δ decorated with Ba0.5Sr0.5Co0.8Fe0.2O3−δ: a bifunctional surface for oxygen electrocatalysis with enhanced stability and activity. J. Am. Chem. Soc. 136, 5229–5232 (2014).

    CAS  PubMed  Google Scholar 

  8. Jung, J.-I. et al. Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis. Energy Environ. Sci. 9, 176–183 (2016).

    CAS  Google Scholar 

  9. McCalla, E. et al. Visualization of O–O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015).

    CAS  PubMed  Google Scholar 

  10. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

    CAS  PubMed  Google Scholar 

  11. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. Chem. Catal. Chem. 3, 1159–1165 (2011).

    CAS  Google Scholar 

  12. Rossmeisl, J., Qu, Z. W., Zhu, H., Kroes, G. J. & Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007).

    CAS  Google Scholar 

  13. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

  14. Koper, M. T. M. Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 4, 2710–2723 (2013).

    CAS  Google Scholar 

  15. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    CAS  Google Scholar 

  16. Matsumoto, Y., Manabe, H. & Sato, E. Oxygen evolution on La1−xSrxCoO3 electrodes in alkaline solutions. J. Electrochem. Soc. 127, 811–814 (1980).

    CAS  Google Scholar 

  17. Giordano, L. et al. pH dependence of OER activity of oxides: current and future perspectives. Catal. Today 262, 2–10 (2016).

    CAS  Google Scholar 

  18. Trześniewski, B. J. et al. In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: the effect of pH on electrochemical activity. J. Am. Chem. Soc. 137, 15112–15121 (2015).

    PubMed  Google Scholar 

  19. Grimaud, A. et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 (2013).

    PubMed  Google Scholar 

  20. Lee, Y.-L., Kleis, J., Rossmeisl, J., Shao-Horn, Y. & Morgan, D. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy Environ. Sci. 4, 3966–3970 (2011).

    CAS  Google Scholar 

  21. Suntivich, J. et al. Estimating hybridization of transition metal and oxygen states in perovskites from O K-edge X-ray absorption spectroscopy. J. Phys. Chem. C 118, 1856–1863 (2014).

    CAS  Google Scholar 

  22. Calle-Vallejo, F., Díaz-Morales, O. A., Kolb, M. J. & Koper, M. T. M. Why is bulk thermochemistry a good descriptor for the electrocatalytic activity of transition metal oxides? ACS Catal. 5, 869–873 (2015).

    CAS  Google Scholar 

  23. Rong, X., Parolin, J. & Kolpak, A. M. A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 6, 1153–1158 (2016).

    CAS  Google Scholar 

  24. Hibbert, D. B. & Churchill, C. R. Kinetics of the electrochemical evolution of isotopically enriched gases. Part 2. – 18O16O evolution on NiCo2O4 and LixCo3−xO4 in alkaline solution. J. Chem. Soc. Faraday Trans. I 80, 1965–1975 (1984).

    CAS  Google Scholar 

  25. Fierro, S., Nagel, T., Baltruschat, H. & Comninellis, C. Investigation of the oxygen evolution reaction on Ti/IrO2 electrodes using isotope labelling and on-line mass spectrometry. Electrochem. Commun. 9, 1969–1974 (2007).

    CAS  Google Scholar 

  26. Macounova, K., Makarova, M. & Krtil, P. Oxygen evolution on nanocrystalline RuO2 and Ru0.9Ni0.1O2−δ electrodes—DEMS approach to reaction mechanism determination. Electrochem. Commun. 11, 1865–1868 (2009).

    CAS  Google Scholar 

  27. Wohlfahrt-Mehrens, M. & Heitbaum, J. Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry. J. Electroanal. Chem. Interf. Electrochem. 237, 251–260 (1987).

    CAS  Google Scholar 

  28. Surendranath, Y., Kanan, M. W. & Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 132, 16501–16509 (2010).

    CAS  PubMed  Google Scholar 

  29. Mavros, M. G. et al. What can density functional theory tell us about artificial catalytic water splitting? Inorg. Chem. 53, 6386–6397 (2014).

    CAS  PubMed  Google Scholar 

  30. Wang, L.-P. & Van Voorhis, T. Direct-coupling O2 bond forming a pathway in cobalt oxide water oxidation catalysts. J. Phys. Chem. Lett. 2, 2200–2204 (2011).

    CAS  Google Scholar 

  31. Betley, T. A., Wu, Q., Van Voorhis, T. & Nocera, D. G. Electronic design criteria for O−O bond formation via metal−oxo complexes. Inorg. Chem. 47, 1849–1861 (2008).

    CAS  Google Scholar 

  32. Cheng, X. et al. Oxygen evolution reaction on La1–xSrxCoO3 perovskites: a combined experimental and theoretical study of their structural, electronic, and electrochemical properties. Chem. Mater. 27, 7662–7672 (2015).

    CAS  Google Scholar 

  33. Goodenough, J. B. Perspective on engineering transition-metal oxides. Chem. Mater. 26, 820–829 (2014).

    CAS  Google Scholar 

  34. Rouxel, J. Anion–cation redox competition and the formation of new compounds in highly covalent systems. Chem. Eur. J. 2, 1053–1059 (1996).

    CAS  Google Scholar 

  35. Nücker, N., Fink, J., Fuggle, J. C., Durham, P. J. & Temmerman, W. M. Evidence for holes on oxygen sites in the high-Tc superconductors La2−xSrxCuO4 and YBa2Cu3O7−y . Phys. Rev. B 37, 5158–5163 (1988).

    Google Scholar 

  36. Amatucci, G. G., Tarascon, J. M. & Klein, L. C. CoO2, the end member of the LixCoO­2 solid solution. J. Electrochem. Soc. 143, 1114–1123 (1996).

    CAS  Google Scholar 

  37. Mefford, J. T., Hardin, W. G., Dai, S., Johnston, K. P. & Stevenson, K. J. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nat. Mater. 13, 726–732 (2014).

    CAS  PubMed  Google Scholar 

  38. Nemudry, A., Goldberg, E. L., Aguirre, M. & Alario-Franco, M. A. Electrochemical topotactic oxidation of nonstoichiometric perovskites at ambient temperature. Solid State Sci. 4, 677–690 (2002).

    CAS  Google Scholar 

  39. Grenier, J. C. et al. Electrochemical oxygen intercalation into oxide networks. J. Solid State Chem. 96, 20–30 (1992).

    CAS  Google Scholar 

  40. May, K. J. et al. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J. Phys. Chem. Lett 3, 3264–3270 (2012).

    CAS  Google Scholar 

  41. Risch, M. et al. Structural changes of cobalt-based perovskites upon water oxidation investigated by EXAFS. J. Phys. Chem. C 117, 8628–8635 (2013).

    CAS  Google Scholar 

  42. Binninger, T. et al. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Sci. Rep. 5, 12167 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim, J., Yin, X., Tsao, K.-C., Fang, S. & Yang, H. Ca2Mn2O5 as oxygen-deficient perovskite ellectrocatalyst for oxygen evolution reaction. J. Am. Chem. Soc. 136, 14646–14649 (2014).

    CAS  PubMed  Google Scholar 

  44. Lee, Y.-L., Gadre, M. J., Shao-Horn, Y. & Morgan, D. Ab initio GGA+U study of oxygen evolution and oxygen reduction electrocatalysis on the (001) surfaces of lanthanum transition metal perovskites LaBO3 (B=Cr, Mn, Fe, Co and Ni). Phys. Chem. Chem. Phys. 17, 21643–21663 (2015).

    CAS  PubMed  Google Scholar 

  45. Bockris, J. O. M. & Otagawa, T. The electrocatalysis of oxygen evolution on perovskites. J. Electrochem. Soc. 131, 290–302 (1984).

    CAS  Google Scholar 

  46. Koper, M. M. Volcano activity relationships for proton-coupled electron transfer reactions in electrocatalysis. Top. Catal. 58, 1153–1158 (2015).

    CAS  Google Scholar 

  47. Nemudry, A., Rudolf, P. & Schöllhorn, R. Topotactic electrochemical redox reactions of the defect perovskite SrCoO2.5+x . Chem. Mater. 8, 2232–2238 (1996).

    CAS  Google Scholar 

  48. Koroidov, S., Anderlund, M. F., Styring, S., Thapper, A. & Messinger, J. First turnover analysis of water-oxidation catalyzed by Co-oxide nanoparticles. Energy Environ. Sci. 8, 2492–2503 (2015).

    CAS  Google Scholar 

  49. Suntivich, J., Gasteiger, H. A., Yabuuchi, N. & Shao-Horn, Y. Electrocatalytic measurement methodology of oxide catalysts using a thin-film rotating disk electrode. J. Electrochem. Soc. 157, B1263–B1268 (2010).

    CAS  Google Scholar 

  50. Wonders, A. H., Housmans, T. H. M., Rosca, V. & Koper, M. T. M. On-line mass spectrometry system for measurements at single-crystal electrodes in hanging meniscus configuration. J. Appl. Electrochem. 36, 1215–1221 (2006).

    CAS  Google Scholar 

  51. Meyers, J. P. & Darling, R. M. Model of carbon corrosion in PEM fuel cells. J. Electrochem. Soc. 153, A1432–A1442 (2006).

    CAS  Google Scholar 

  52. He, M., Fic, K., Frckowiak, E., Novak, P. & Berg, E. J. Ageing phenomena in high-voltage aqueous supercapacitors investigated by in situ gas analysis. Energy Environ. Sci. 9, 623–633 (2016).

    Google Scholar 

  53. Lee, Y.-L., Kleis, J., Rossmeisl, J. & Morgan, D. Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes. Phys. Rev. B 80, 224101 (2009).

    Google Scholar 

  54. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  55. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Google Scholar 

  56. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  57. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    CAS  Google Scholar 

  58. Rossmeisl, J., Logadottir, A. & Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 319, 178–184 (2005).

    CAS  Google Scholar 

  59. Goodenough, J. B., Manoharan, R. & Paranthaman, M. Surface protonation and electrochemical activity of oxides in aqueous solution. J. Am. Chem. Soc. 112, 2076–2082 (1990).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Skoltech-MIT Center for Electrochemical Energy, the SMART programme, and the Department of Energy (DOE) and National Energy Technology Laboratory (NETL), Solid State Energy Conversion Alliance (SECA) Core Technology Program (Funding Opportunity Number DEFE0009435). This work is also supported in part by the Netherlands Organization for Scientific Research (NWO) within the research programme of BioSolar Cells, co-financed by the Dutch Ministry of Economic Affairs, Agriculture and Innovation. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy (contract no. DE-AC02-05CH11231). The authors would like to acknowledge Dane Morgan and Jean-Marie Tarascon for fruitful discussion.

Author information

Authors and Affiliations

Authors

Contributions

Y.S.-H. and A.G. designed the experiments. A.G. and W.T.H. carried out the synthesis, structural and chemical analysis. A.G. and B.H. performed the electrochemical measurements. O.D.-M. and M.T.M.K. conducted the OLEMS measurements. Y.-L.L and L.G. carried out the DFT calculations. Y.S.-H. wrote the manuscript and all authors edited the manuscript.

Corresponding author

Correspondence to Yang Shao-Horn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimaud, A., Diaz-Morales, O., Han, B. et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nature Chem 9, 457–465 (2017). https://doi.org/10.1038/nchem.2695

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2695

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing