Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reversible Bergman cyclization by atomic manipulation

Abstract

The Bergman cyclization is one of the most fascinating rearrangements in chemistry, with important implications in organic synthesis and pharmacology. Here we demonstrate a reversible Bergman cyclization for the first time. We induced the on-surface transformation of an individual aromatic diradical into a highly strained ten-membered diyne using atomic manipulation and verified the products by non-contact atomic force microscopy with atomic resolution. The diyne and diradical were stabilized by using an ultrathin NaCl film as the substrate, and the diyne could be transformed back into the diradical. Importantly, the diradical and the diyne exhibit different reactivity, electronic, magnetic and optical properties associated with the changes in the bond topology, and spin multiplicity. With this reversible, triggered Bergman cyclization we demonstrated switching on demand between the two reactive intermediates by means of selective C–C bond formation or cleavage, which opens up the field of radical chemistry for on-surface reactions by atomic manipulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bergman cyclizations.
Figure 2: Structures and AFM imaging of the starting material, reaction intermediates and product.
Figure 3: Diyne identification.
Figure 4: Reversible Bergman cyclization.

References

  1. Jones, R. R. & Bergman, R. G. p-Benzyne. Generation as an intermediate in a thermal isomerization reaction and trapping evidence for the 1,4-benzenediyl structure. J. Am. Chem. Soc. 94, 660–661 (1972).

    Article  CAS  Google Scholar 

  2. Wenk, H. H., Winkler, M. & Sander, W. One century of aryne chemistry. Angew. Chem. Int. Ed. 42, 502–528 (2003).

    Article  CAS  Google Scholar 

  3. Nicolaou, K. C., Dai, W.-M., Tsay, S.-C., Estevez, V. A. & Wrasidlo, W. Designed enediynes: a new class of DNA-cleaving molecules with potent and selective anticancer activity. Science 256, 1172–1178 (1992).

    Article  CAS  Google Scholar 

  4. Nicolaou, K., Smith, A. & Yue, E. Chemistry and biology of natural and designed enediynes. Proc. Natl Acad. Sci. USA 90, 5881–5888 (1993).

    Article  CAS  Google Scholar 

  5. Sinha, S. C. et al. Prodrugs of dynemicin analogs for selective chemotherapy mediated by an aldolase catalytic Ab. Proc. Natl Acad. Sci. USA 101, 3095–3099 (2004).

    Article  CAS  Google Scholar 

  6. Darby, N. et al. Concerning the 1,5-didehydro-[10]-annulene system. J. Chem. Soc. D 23, 1516–1517 (1971).

    Article  Google Scholar 

  7. Chapman, O., Chang, C. & Kolc, J. 9,10-Dehydroanthracene. A derivative of 1,4-dehydrobenzene. J. Am. Chem. Soc. 98, 5703–5705 (1976).

    Article  CAS  Google Scholar 

  8. Schottelius, M. J. & Chen, P. 9,10-Dehydroanthracene: p-benzyne-type biradicals abstract hydrogen unusually slowly. J. Am. Chem. Soc. 118, 4896–4903 (1996).

    Article  CAS  Google Scholar 

  9. Wenk, H. H. & Sander, W. Photochemistry of 9,10-dicarbonyl-9,10-dihydroanthracene—a source of 9,10-dehydroanthracene? Eur. J. Org. Chem. 1999, 57–60 (1999).

    Article  Google Scholar 

  10. Kötting, C., Sander, W., Kammermeier, S. & Herges, R. Matrix isolation of 3,4-benzocyclodeca-3,7,9-triene-1,5-diyne. Eur. J. Org. Chem. 1998, 799–803 (1998).

    Article  Google Scholar 

  11. Perepichka, D. F. & Rosei, F. Extending polymer conjugation into the second dimension. Science 323, 216–217 (2009).

    Article  CAS  Google Scholar 

  12. Palma, C.-A. & Samorì, P. Blueprinting macromolecular electronics. Nature Chem. 3, 431–436 (2011).

    Article  CAS  Google Scholar 

  13. Hla, S.-W., Bartels, L., Meyer, G. & Rieder, K.-H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering. Phys. Rev. Lett. 85, 2777–2780 (2000).

    Article  CAS  Google Scholar 

  14. Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nature Nanotech. 2, 687–691 (2007).

    Article  CAS  Google Scholar 

  15. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    Article  CAS  Google Scholar 

  16. Lafferentz, L. et al. Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nature Chem. 4, 215–220 (2012).

    Article  CAS  Google Scholar 

  17. Sun, Q. et al. On-surface formation of one-dimensional polyphenylene through Bergman cyclization. J. Am. Chem. Soc. 135, 8448–8451 (2013).

    Article  CAS  Google Scholar 

  18. de Oteyza, D. G. et al. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434–1437 (2013).

    Article  CAS  Google Scholar 

  19. Stipe, B. et al. Single-molecule dissociation by tunneling electrons. Phys. Rev. Lett. 78, 4410–4413 (1997).

    Article  CAS  Google Scholar 

  20. Lee, H. J. & Ho, W. Single-bond formation and characterization with a scanning tunneling microscope. Science 286, 1719–1722 (1999).

    Article  CAS  Google Scholar 

  21. Zhao, A. et al. Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding. Science 309, 1542–1544 (2005).

    Article  CAS  Google Scholar 

  22. Repp, J., Meyer, G., Paavilainen, S., Olsson, F. E. & Persson, M. Imaging bond formation between a gold atom and pentacene on an insulating surface. Science 312, 1196–1199 (2006).

    Article  CAS  Google Scholar 

  23. Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    Article  CAS  Google Scholar 

  24. Albrecht, F., Neu, M., Quest, C., Swart, I. & Repp, J. Formation and characterization of a molecule–metal–molecule bridge in real space. J. Am. Chem. Soc. 135, 9200–9203 (2013).

    Article  CAS  Google Scholar 

  25. Kumagai, T. et al. Controlling intramolecular hydrogen transfer in a porphycene molecule with single atoms or molecules located nearby. Nature Chem. 6, 41–46 (2014).

    Article  CAS  Google Scholar 

  26. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    Article  CAS  Google Scholar 

  27. Mohn, F. et al. Reversible bond formation in a gold-atom–organic-molecule complex as a molecular switch. Phys. Rev. Lett. 105, 266102 (2010).

    Article  Google Scholar 

  28. Pavliček, N. et al. On-surface generation and imaging of arynes by atomic force microscopy. Nature Chem. 7, 623–628 (2015).

    Article  Google Scholar 

  29. Riss, A. et al. Local electronic and chemical structure of oligo-acetylene derivatives formed through radical cyclizations at a surface. Nano Lett. 14, 2251–2255 (2014).

    Article  CAS  Google Scholar 

  30. Pavliček, N. et al. Atomic force microscopy reveals bistable configurations of dibenzo[a,h]thianthrene and their interconversion pathway. Phys. Rev. Lett. 108, 086101 (2012).

    Article  Google Scholar 

  31. Schuler, B. et al. Adsorption geometry determination of single molecules by atomic force microscopy. Phys. Rev. Lett. 111, 106103 (2013).

    Article  Google Scholar 

  32. Mohn, F., Schuler, B., Gross, L. & Meyer, G. Different tips for high-resolution AFM and STM imaging of single molecules. Appl. Phys. Lett. 102, 073109 (2013).

    Article  Google Scholar 

  33. Repp, G., Meyer, G., Stojkovic, S. M., Gourdon, A. & Joachim, C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).

    Article  Google Scholar 

  34. Gross, L. et al. Bond-order discrimination by atomic force microscopy. Science 337, 1326–1329 (2012).

    Article  CAS  Google Scholar 

  35. Moll, N. et al. Image distortions of partly fluorinated hydrocarbons in atomic force microscopy with carbon monoxide terminated tips. Nano Lett. 14, 6127–6131 (2014).

    Article  CAS  Google Scholar 

  36. Swart, I., Sonnleitner, T., Niedenführ, J. & Repp, J. Controlled lateral manipulation of molecules on insulating films by STM. Nano Lett. 12, 1070–1074 (2012).

    Article  CAS  Google Scholar 

  37. Gross, L. et al. Organic structure determination using atomic resolution scanning probe microscopy. Nature Chem. 2, 821–825 (2010).

    Article  CAS  Google Scholar 

  38. Giessibl, F. J. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 73, 3956–3958 (1998).

    Article  CAS  Google Scholar 

  39. Albrecht, T. R., Grütter, P., Horne, D. & Rugar, D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668–673 (1991).

    Article  Google Scholar 

  40. Boneschanscher, M. P., Hämäläinen, S. K., Liljeroth, P. & Swart, I. Sample corrugation affects the apparent bond lengths in atomic force microscopy. ACS Nano 8, 3006–3014 (2014).

    Article  CAS  Google Scholar 

  41. Hapala, P. et al. The mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).

    Article  Google Scholar 

  42. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  Google Scholar 

  43. Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comp. Phys. Comm. 180, 2175–2196 (2009).

    Article  CAS  Google Scholar 

  44. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  45. Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).

    Article  Google Scholar 

  46. Ruiz, V. G., Liu, W., Zojer, E., Scheffler, M. & Tkatchenko, A. Density-functional theory with screened van-der-Waals interactions for the modeling of hybrid inorganic–organic systems. Phys. Rev. Lett. 108, 146103 (2012).

    Article  Google Scholar 

  47. Zhang, G.-X., Tkatchenko, A., Paier, J., Appel, H. & Scheffler, M. Van der Waals interactions in ionic and semiconductor solids. Phys. Rev. Lett. 107, 245501 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank I. Tavernelli, D. Pérez, E. Guitián and R. Allenspach for discussions. We acknowledge financial support from the European Research Council Advanced Grant CEMAS (agreement no. 291194), the European Union project PAMS (610446) and the Initial Training Network's QTea (317485) and ACRITAS (317348) programs. D.P. acknowledges the Spanish Ministry of Science and Competitiveness for financial support (MAT2013-46593-C6-6-P).

Author information

Authors and Affiliations

Authors

Contributions

B.S., S.F., F.M., N.P., G.M. and L.G. performed the STM/AFM experiments. N.M. performed the DFT calculations. D.P. identified the reaction. All the authors analysed the data and contributed to the manuscript.

Corresponding author

Correspondence to Leo Gross.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 586 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuler, B., Fatayer, S., Mohn, F. et al. Reversible Bergman cyclization by atomic manipulation. Nature Chem 8, 220–224 (2016). https://doi.org/10.1038/nchem.2438

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2438

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing