Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlled partial interpenetration in metal–organic frameworks

Abstract

Interpenetration, the entwining of multiple lattices, is a common phenomenon in metal–organic frameworks (MOFs). Typically, in interpenetrated MOFs the sub-lattices are fully occupied. Here we report a family of MOFs in which one sub-lattice is fully occupied and the occupancy level of the other can be controlled during synthesis to produce frameworks with variable levels of partial interpenetration. We also report an ‘autocatenation’ process, a transformation of non-interpenetrated lattices into doubly interpenetrated frameworks via progressively higher degrees of interpenetration that involves no external reagents. Autocatenation maintains crystallinity and can be triggered either thermally or by shear forces. The ligand used to construct these MOFs is chiral, and both racemic and enantiopure partially interpenetrated frameworks can be accessed. X-ray diffraction, nonlinear optical microscopy and theoretical calculations offer insights into the structures and dynamic behaviour of these materials and the growth mechanisms of interpenetrated MOFs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MOFs with controlled degrees of interpenetration derived from the ligand rac-1.
Figure 2: MOFs with controlled degrees of interpenetration derived from ligand R-1 or S-1.
Figure 3: Ligand functionalization.
Figure 4: Autocatenation in MUF-9.
Figure 5: Characteristics of frameworks with various levels of interpenetration produced by different methods.

Similar content being viewed by others

References

  1. Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 6149 (2013).

    Article  CAS  Google Scholar 

  2. Allendorf, M. D. & Stavila, V. Crystal engineering, structure–function relationships, and the future of metal–organic frameworks. CrystEngComm 17, 229–246 (2015).

    Article  CAS  Google Scholar 

  3. Batten, S. R. Topology of interpenetration. CrystEngComm 3, 67–72 (2001).

    Article  Google Scholar 

  4. Batten, S. R. & Robson, R. Interpenetrating nets: ordered, periodic entanglement. Angew. Chem. Int. Ed. 37, 1460–1494 (1998).

    Article  Google Scholar 

  5. Zhang, S.-Y., Zhang, Z. & Zaworotko, M. J. Topology, chirality and interpenetration in coordination polymers. Chem. Commun. 49, 9700–9703 (2013).

    Article  CAS  Google Scholar 

  6. Jiang, H.-L., Makal, T. A. & Zhou, H.-C. Interpenetration control in metal–organic frameworks for functional applications. Coord. Chem. Rev. 257, 2232–2249 (2013).

    Article  CAS  Google Scholar 

  7. Blatov, V. A., Carlucci, L., Ciani, G. & Proserpio, D. M. Interpenetrating metal–organic and inorganic 3D networks: a computer-aided systematic investigation. Part I. Analysis of the Cambridge Structural Database. CrystEngComm 6, 378–395 (2004).

    Article  Google Scholar 

  8. Baburin, I. A. et al. Interpenetrating metal–organic and inorganic 3D networks: a computer-aided systematic investigation. Part II. Analysis of the Inorganic Crystal Structure Database (ICSD). J. Solid State Chem. 178, 2452–2474 (2005).

    Article  CAS  Google Scholar 

  9. Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Rowsell, J. L. C. & Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal–organic frameworks. J. Am. Chem. Soc. 128, 1304–1315 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Maji, T. K., Matsuda, R. & Kitagawa, S. A flexible interpenetrating coordination framework with a bimodal porous functionality. Nature Mater. 6, 142–148 (2007).

    Article  CAS  Google Scholar 

  12. Park, T.-H., Koh, K., Wong-Foy, A. G. & Matzger, A. J. Nonlinear properties in coordination copolymers derived from randomly mixed ligands. Cryst. Growth Des. 11, 2059–2063 (2011).

    Article  CAS  Google Scholar 

  13. Bureekaew, S. et al. Control of interpenetration for tuning structural flexibility influences sorption properties. Angew. Chem. Int. Ed. 49, 7660–7664 (2010).

    Article  CAS  Google Scholar 

  14. Feldblyum, J. I. et al. Interpenetration, porosity, and high-pressure gas adsorption in Zn4O(2,6-naphthalene dicarboxylate)3 . Langmuir 29, 8146–8153 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Ma, S. et al. Framework-catenation isomerism in metal−organic frameworks and its impact on hydrogen uptake. J. Am. Chem. Soc. 129, 1858–1859 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Li, B., Wen, H.-M., Zhou, W. & Chen, B. Porous metal–organic frameworks for gas storage and separation: what, how, and why? J. Phys. Chem. Lett. 5, 3468–3479 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, B. et al. Enhanced adsorption selectivity of hydrogen/methane mixtures in metal–organic frameworks with interpenetration: a molecular simulation study. J. Phys. Chem. C 112, 9854–9860 (2008).

    Article  CAS  Google Scholar 

  18. Deshpande, R. K., Waterhouse, G. I. N., Jameson, G. B. & Telfer, S. G. Photolabile protecting groups in metal–organic frameworks: preventing interpenetration and masking functional groups. Chem. Commun. 48, 1574–1576 (2012).

    Article  CAS  Google Scholar 

  19. Deshpande, R. K., Minnaar, J. L. & Telfer, S. G. Thermolabile groups in metal–organic frameworks: suppression of network interpenetration, post-synthetic cavity expansion and protection of reactive functional groups. Angew. Chem. Int. Ed. 47, 4598–4602 (2010).

    Article  CAS  Google Scholar 

  20. Henke, S. et al. Zinc-1,4-benzenedicarboxylate-bipyridine frameworks—linker functionalization impacts network topology during solvothermal synthesis. J. Mater. Chem. 22, 909–918 (2012).

    Article  CAS  Google Scholar 

  21. Zhang, J. et al. Temperature and concentration control over interpenetration in a metal–organic material. J. Am. Chem. Soc. 131, 17040–17041 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Falkowski, J. M., Wang, C., Liu, S. & Lin, W. Actuation of asymmetric cyclopropanation catalysts: reversible single-crystal to single-crystal reduction of metal–organic frameworks. Angew. Chem. 123, 8833–8837 (2011).

    Article  Google Scholar 

  23. Rankine, D. et al. Control of framework interpenetration for in situ modified hydroxyl functionalised IRMOFs. Chem. Commun. 48, 10328–10330 (2012).

    Article  CAS  Google Scholar 

  24. Aggarwal, H., Das, R. K., Bhatt, P. M. & Barbour, L. J. Isolation of a structural intermediate during switching of degree of interpenetration in a metal–organic framework. Chem. Sci. 6, 4986–4992 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aggarwal, H., Lama, P. & Barbour, L. J. Transformation from non- to double-interpenetration in robust Cd(II) doubly-pillared-layered metal–organic frameworks. Chem. Commun. 50, 14543–14546 (2014).

    Article  CAS  Google Scholar 

  26. Aggarwal, H., Bhatt, P. M., Bezuidenhout, C. X. & Barbour, L. J. Direct evidence for single-crystal to single-crystal switching of degree of interpenetration in a metal–organic framework. J. Am. Chem. Soc. 136, 3776–3779 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Choi, S. B. et al. Reversible interpenetration in a metal–organic framework triggered by ligand removal and addition. Angew. Chem. Int. Ed. 51, 8791–8795 (2012).

    Article  CAS  Google Scholar 

  28. Zhang, J.-P., Lin, Y.-Y., Zhang, W.-X. & Chen, X.-M. Temperature- or guest-induced drastic single-crystal-to-single-crystal transformations of a nanoporous coordination polymer. J. Am. Chem. Soc. 127, 14162–14163 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Lapidus, S. H., Halder, G. J., Chupas, P. J. & Chapman, K. W. Exploiting high pressures to generate porosity, polymorphism, and lattice expansion in the nonporous molecular framework Zn(CN)2 . J. Am. Chem. Soc. 135, 7621–7628 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Lun, D. J., Waterhouse, G. I. N. & Telfer, S. G. A general thermolabile protecting group strategy for organocatalytic metal−organic frameworks. J. Am. Chem. Soc. 133, 5806–5809 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. O'Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 41, 1782–1789 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Cairns, A. B. & Goodwin, A. L. Structural disorder in molecular framework materials. Chem. Soc. Rev. 42, 4881–4893 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Yang, S. et al. A partially interpenetrated metal–organic framework for selective hysteretic sorption of carbon dioxide. Nature Mater. 11, 710–716 (2012).

    Article  CAS  Google Scholar 

  35. Allinger, N. L., Szkrybalo, W. & DaRooge, M. A. On the barrier to inversion of cyclooctatetraene. The thermal decomposition of dibenzo[e,g][1,4]diazocine. J. Med. Chem. 28, 3007–3010 (1963).

    CAS  Google Scholar 

  36. Moller, K. & Bein, T. Mesoporosity—a new dimension for zeolites. Chem. Soc. Rev. 42, 3689–3707 (2013).

    Article  PubMed  CAS  Google Scholar 

  37. Wei, Y., Parmentier, T. E., de Jong, K. P. & Zecevic, J. Tailoring and visualizing the pore architecture of hierarchical zeolites. Chem. Soc. Rev. 44, 7234–7261 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen, L. A., He, H. & Pham-Huy, C. Chiral drugs: an overview. Int. J. Biomed. Sci. 2, 85–100 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, J.-P. et al. Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers. Chem. Soc. Rev. 43, 5789–5814 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Stylianou, K. C. et al. Dimensionality transformation through paddlewheel reconfiguration in a flexible and porous Zn-based metal–organic framework. J. Am. Chem. Soc. 134, 20466–20478 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Chesman, A. S. R., Turner, D. R., Deacon, G. B. & Batten, S. R. Transformation of a 1D to 3D coordination polymer mediated by low temperature lattice solvent loss. Chem. Commun. 46, 4899–4901 (2010).

    Article  CAS  Google Scholar 

  42. Van der Veen, M. A., Verbiest, T. & De Vos, D. E. Probing microporous materials with second-harmonic generation. Micropor. Mesopor. Mater. 166, 102–108 (2013).

    Article  CAS  Google Scholar 

  43. Van der Veen, M. A., Vermoortele, F., De Vos, D. E. & Verbiest, T. Point group symmetry determination via observables revealed by polarized second-harmonic generation microscopy. Anal. Chem. 84, 6378–6385 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Ortiz, A. U., Boutin, A., Fuchs, A. H. & Coudert, F.-X. Anisotropic elastic properties of flexible metal–organic frameworks: how soft are soft porous crystals? Phys. Rev. Lett. 109, 195502 (2012).

    Article  PubMed  CAS  Google Scholar 

  45. Ortiz, A. U., Boutin, A., Fuchs, A. H. & Coudert, F.-X. Investigating the pressure-induced amorphization of zeolitic imidazolate framework ZIF-8: mechanical instability due to shear mode softening. J. Phys. Chem. Lett. 4, 1861–1865 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Bouëssel du Bourg, L., Ortiz, A. U., Boutin, A. & Coudert, F.-X. Thermal and mechanical stability of zeolitic imidizolate frameworks polymorphs. APL Mater. 2, 124110 (2014).

    Article  CAS  Google Scholar 

  47. Ortiz, A. U., Boutin, A., Fuchs, A. H. & Coudert, F.-X. Metal–organic frameworks with wine-rack motif: what determines their flexibility and elastic properties? J. Chem. Phys. 138, 174703 (2013).

    Article  PubMed  CAS  Google Scholar 

  48. Kuc, A., Enyashin, A. & Seifert, G. Metal−organic frameworks: structural, energetic, electronic, and mechanical properties. J. Phys. Chem. B 111, 8179–8186 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Coudert, F.-X. Responsive metal–organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem. Mater. 27, 1905–1916 (2015).

    Article  CAS  Google Scholar 

  50. Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nature Chem. 1, 695–704 (2010).

    Article  CAS  Google Scholar 

  51. Schneemann, A. et al. Flexible metal–organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Li, C.-P., Chen, J., Liu, C.-S. & Du, M. Dynamic structural transformations of coordination supramolecular systems upon exogenous stimulation. Chem. Commun. 51, 2768–2781 (2015).

    Article  CAS  Google Scholar 

  53. Tan, J. C. & Cheetham, A. K. Mechanical properties of hybrid inorganic–organic framework materials: establishing fundamental structure–property relationships. Chem. Soc. Rev. 40, 1059–1080 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Klein, N. et al. Route to a family of robust, non-interpenetrated metal–organic frameworks with pto-like topology. Chem. Eur. J. 17, 13007–13016 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Burrows, A. D., Frost, C., Mahon, M. F. & Richardson, C. Post-synthetic modification of tagged metal–organic frameworks. Angew. Chem. Int. Ed. 47, 8482–8486 (2008).

    Article  CAS  Google Scholar 

  56. Ostwald, W. Studien ber die Bildung und Umwandlung fester Körper. Z. Phys. Chem. 22, 289–330 (1897).

    Article  CAS  Google Scholar 

  57. Threlfall, T. Structural and thermodynamic explanations of Ostwald's rule. Org. Process Res. Dev. 7, 1017–1027 (2003).

    Article  CAS  Google Scholar 

  58. Farha, O. K. & Hupp, J. T. Rational design, synthesis, purification, and activation of metal−organic framework materials. Acc. Chem. Res. 43, 1166–1175 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Bennett, T. D. & Cheetham, A. K. Amorphous metal–organic frameworks. Acc. Chem. Res. 47, 1555–1562 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the RSNZ Marsden Fund and the MacDiarmid Institute for financial support, to D. Lun for technical assistance, to S. Narayanaswamy and C. Lepper for assistance with the high-pressure experiments and to the staff of the Manawatu Microscopy and Imaging Centre at Massey University. F.X.C. acknowledges computing time on HPC platforms provided by a GENCI grant (x2015087069), and M.A.v.d.V., S.V.C. and T.V. acknowledge financial support from the Hercules Foundation and FWO-Flanders (research project G.0927.13).

Author information

Authors and Affiliations

Authors

Contributions

A.F., L.L., D.P., S.J.T., S.V.C., M.A.v.d.V., T.V. and S.G.T. designed the experiments, carried out the experimental work and interpreted the experimental data. F.X.C. performed the theoretical calculations and analysed the results. S.G.T. coordinated the writing of the manuscript with input from all authors.

Corresponding author

Correspondence to Shane G. Telfer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 26227 kb)

Supplementary movie

Supplementary movie 1 (MP4 1623 kb)

Supplementary information

Crystallographic data for non-interpenetrated MUF-9. (CIF 405 kb)

Supplementary information

Crystallographic data for doubly interpenetrated MUF-9. (CIF 621 kb)

Supplementary information

Crystallographic data for non-interpenetrated MUF-10. (CIF 194 kb)

Supplementary information

Crystallographic data for doubly interpenetrated MUF-10. (CIF 422 kb)

Supplementary information

Crystallographic data for the gamma phase of MUF-9. (CIF 730 kb)

Supplementary information

Crystallographic data for the gamma phase of MUF-10. (CIF 1689 kb)

Supplementary information

rystallographic data for the partially interpenetrated MUF-9 formed after 16 h reaction in DBF. (CIF 159 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed after 40 h reaction in DBF. (CIF 160 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed after 65 h reaction in DBF. (CIF 162 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed after 134 h reaction in DBF. (CIF 129 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed after 8 h reaction in DMF. (CIF 168 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed after 2 h reaction in DEF. (CIF 139 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by desolvation of DMF-occluded alpha-MUF-9 over 100 mins MOF PIP-77-MUF-9. (CIF 173 kb)

Supplementary information

Crystallographic data for doubly interpenetrated MUF-9 formed by the further desolvation of DRY-1-MUF-9 over another 100 mins MOF beta-MUF-9. (CIF 167 kb)

Supplementary information

Crystallographic data for non-interpenetrated MUF-9 formed by reaction in 0% DMF in DBF. (CIF 166 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 1% DMF in DBF, dataset a. (CIF 162 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 1% DMF in DBF, dataset b. (CIF 161 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 1% DMF in DBF, dataset c. (CIF 162 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 2% DMF in DBF, dataset a. (CIF 161 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 2% DMF in DBF, dataset b. (CIF 163 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 2% DMF in DBF, dataset c. (CIF 162 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 3% DMF in DBF, dataset a. (CIF 155 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 3% DMF in DBF, dataset b. (CIF 162 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 3% DMF in DBF, dataset c. (CIF 163 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 4% DMF in DBF, dataset a. (CIF 162 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 4% DMF in DBF, dataset b. (CIF 152 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 4% DMF in DBF, dataset c. (CIF 163 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 5% DMF in DBF, dataset a. (CIF 162 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 5% DMF in DBF, dataset b. (CIF 162 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 5% DMF in DBF, dataset c. (CIF 163 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 6% DMF in DBF, dataset a. (CIF 161 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 6% DMF in DBF, dataset b. (CIF 162 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 6% DMF in DBF, dataset c. (CIF 161 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 7% DMF in DBF, dataset a. (CIF 153 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 7% DMF in DBF, dataset b. (CIF 153 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 7% DMF in DBF, dataset c. (CIF 162 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 8% DMF in DBF, dataset a. (CIF 161 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 8% DMF in DBF, dataset b. (CIF 161 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 8% DMF in DBF, dataset c. (CIF 162 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 10% DMF in DBF, dataset a. (CIF 162 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 10% DMF in DBF, dataset b. (CIF 163 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 10% DMF in DBF, dataset c. (CIF 163 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 12% DMF in DBF, dataset a. (CIF 162 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 12% DMF in DBF, dataset b. (CIF 162 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 12% DMF in DBF, dataset c. (CIF 151 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 15% DMF in DBF over 6 hours, dataset a. (CIF 160 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 15% DMF in DBF over 6 hours, dataset b. (CIF 162 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by reaction in 15% DMF in DBF over 7 hours. (CIF 170 kb)

Supplementary information

Crystallographic data for doubly interpenetrated MUF-9 formed by reaction in 15% DMF in DBF over 8 hours. (CIF 156 kb)

Supplementary information

Crystallographic data for non-interpenetrated MUF-9 before heating in DMF. (CIF 248 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by heating alpha-MUF-9 in DMF for 6 h. (CIF 196 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by heating alpha-MUF-9 in DMF for 10 h. (CIF 440 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by heating alpha-MUF-9 in DMF for 12 h. (CIF 258 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by heating alpha-MUF-9 in DMF for 18 h, dataset a. (CIF 246 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by heating alpha-MUF-9 in DMF for 18 h, dataset b. (CIF 253 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by heating alpha-MUF-9 in DMF for 21 h. (CIF 260 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by heating alpha-MUF-9 in DMF for 23 h. (CIF 278 kb)

Supplementary information

Crystallographic data for the Partially interpenetrated MUF-9 formed by heating alpha-MUF-9 in DMF for 24 h, dataset a. (CIF 259 kb)

Supplementary information

Crystallographic data for the Partially interpenetrated MUF-9 formed by heating alpha-MUF-9 in DMF for 24 h, dataset b. (CIF 244 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by heating alpha-MUF-9 in DMF for 27 h. (CIF 256 kb)

Supplementary information

Crystallographic data for doubly interpenetrated MUF-9 formed by heating alpha-MUF-9 in DMF for 30 h. (CIF 256 kb)

Supplementary information

Crystallographic data for the partially interpenetrated MUF-9 formed by heating alpha-MUF-9 in DMF for 36 h. (CIF 239 kb)

Supplementary information

Crystallographic data for doubly interpenetrated MUF-9 formed by heating alpha-MUF-9 in DMF for 45 h. (CIF 248 kb)

Supplementary information

Crystallographic data for doubly interpenetrated MUF-9 formed by heating alpha-MUF-9 in DMF for 60 h. (CIF 235 kb)

Supplementary information

Crystallographic data for non-interpenetrated MUF-9 after heating alpha-MUF-9 in DMF/DBF (20/80) for 40 h. (CIF 250 kb)

Supplementary information

Crystallographic data for doubly interpenetrated MUF-11 grown in DMF. (CIF 172 kb)

Supplementary information

Crystallographic data for doubly interpenetrated MUF-12 grown in DMF. (CIF 181 kb)

Supplementary information

Crystallographic data for non-interpenetrated MUF-14 grown in DEF. (CIF 170 kb)

Supplementary information

Calculated crystallographic parameters for MOF alpha-MUF-10. (CIF 3 kb)

Supplementary information

Calculated crystallographic parameters for MOF beta-MUF-10. (CIF 6 kb)

Supplementary information

Calculated crystallographic parameters for MOF gamma-MUF-10. (CIF 8 kb)

Supplementary information

Calculated crystallographic parameters for MOF IRMOF-9. (CIF 3 kb)

Supplementary information

Calculated crystallographic parameters for MOF IRMOF-10. (CIF 4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferguson, A., Liu, L., Tapperwijn, S. et al. Controlled partial interpenetration in metal–organic frameworks. Nature Chem 8, 250–257 (2016). https://doi.org/10.1038/nchem.2430

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2430

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing