Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Through-space transfer of chiral information mediated by a plasmonic nanomaterial

Abstract

The ability to detect chirality gives stereochemically attuned nanosensors the potential to revolutionize the study of biomolecular processes. Such devices may structurally characterize the mechanisms of protein–ligand binding, the intermediates of amyloidogenic diseases and the effects of phosphorylation and glycosylation. We demonstrate that single nanoparticle plasmonic reporters, or nanotags, can enable a stereochemical response to be transmitted from a chiral analyte to an achiral benzotriazole dye molecule in the vicinity of a plasmon resonance from an achiral metallic nanostructure. The transfer of chirality was verified by the measurement of mirror image surface enhanced resonance Raman optical activity spectra for the two enantiomers of both ribose and tryptophan. Computational modelling confirms these observations and reveals the novel chirality transfer mechanism responsible. This is the first report of colloidal metal nanoparticles in the form of single plasmonic substrates displaying an intrinsic chiral sensitivity once attached to a chiral molecule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the silver nanotag.
Figure 2: SERRS spectra and SERROA spectra.
Figure 3: SERRS spectra and SERROA spectra.
Figure 4: Model system and its Raman and ROA spectra, generated by matrix perturbation theory.

Similar content being viewed by others

References

  1. Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Sci. Am. 325, 1513–1515 (2009).

    CAS  Google Scholar 

  2. Schwaneck, A. S. et al. Broken time reversal of light interaction with planar chiral nanostructures. Phys. Rev. Lett. 91, 247404 (2003).

    Article  Google Scholar 

  3. Kuwata-Gonokami, M. et al. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 95, 227401 (2005).

    Article  Google Scholar 

  4. Hendry, E. et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nature Nanotech. 5, 783–787 (2010).

    Article  CAS  Google Scholar 

  5. Slocik, J. M., Govorov, A. O. & Naik, R. R. Plasmonic circular dichroism of peptide functionalized gold nanoparticles. Nano. Lett. 11, 701–705 (2011).

    Article  CAS  Google Scholar 

  6. George, J. & Thomas, K. G. Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes. J. Am. Chem. Soc. 132, 2502–2503 (2010).

    Article  CAS  Google Scholar 

  7. Shukla, N., Bartel, M. A. & Gellman, A. J. Enantioselective separation on chiral Au nanoparticles. J. Am. Chem. Soc. 132, 8575–8580 (2010).

    Article  CAS  Google Scholar 

  8. Řezanka, P., Záruba, K. & Král, V. Supramolecular chirality of cysteine modified silver nanoparticles. Colloids Surf. A 374, 77–83 (2011).

    Article  Google Scholar 

  9. Elemans, J. A. A. W., de Cat, I., Xu, H. & de Feyter, S. Two-dimensional chirality at liquid–solid interfaces. Chem. Soc. Rev. 38, 722–736 (2009).

    Article  CAS  Google Scholar 

  10. Ernst, K. H. Supramolecular Surface Chirality 209–252 (Springer, 2006).

    Book  Google Scholar 

  11. Ernst, K. H. Molecular chirality in surface science. Surf. Sci. 613, 1–5 (2013).

    Article  CAS  Google Scholar 

  12. Chon, H., Lee, S., Son, S., Oh, C. H. & Choo, J. Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hollow gold nanospheres. Anal. Chem. 81, 3029–3034 (2009).

    Article  CAS  Google Scholar 

  13. Camden, J. P., Dieringer, J. A., Zhao, J. & van Duyne, R. P. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc. Chem. Res. 41, 1653–1661 (2008).

    Article  CAS  Google Scholar 

  14. Temur, E., Boyaci, I., Tamer, U., Unsal, H. & Aydogan, N. A highly sensitive detection platform based on surface-enhanced Raman scattering for Escherichia coli enumeration. Anal. Bioanal. Chem. 397, 1595–1604 (2010).

    Article  CAS  Google Scholar 

  15. Jackson, J. B., Westcott, S. L., Hirsch, L. R., West, J. L. & Halas, N. J. Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl. Phys. Lett 82, 257–259 (2003).

    Article  CAS  Google Scholar 

  16. Lin, A. W. H., Lewinski, N. A., Lee, M. & Drezek, R. A. Reflectance spectroscopy of gold nanoshells: computational predictions and experimental measurements. J. Nanopart. Res. 8, 681–692 (2006). .

    Article  CAS  Google Scholar 

  17. Rocks, L., Faulds, K. & Graham, D. Rationally designed SERS active silica coated silver nanoparticles. Chem. Commun. 47, 4415–4417 (2011).

    Article  CAS  Google Scholar 

  18. Barron, L. D., Hecht, L., Blanch, E. W. & Bell, A. F. Solution structure and dynamics of biomolecules from Raman optical activity. Prog. Biophys. Mol. Biol. 73, 1–49 (2000).

    Article  CAS  Google Scholar 

  19. Freedman, T. B., Nafie, L. A. & Keiderling, T. A. Vibrational optical activity of oligopeptides. Biopolymers 37, 265–279 (1995).

    Article  CAS  Google Scholar 

  20. Nafie, L. A. Vibrational optical activity. Appl. Spectrosc. 50, 14A–26A (1996).

    Article  CAS  Google Scholar 

  21. Berova, N. et al. in Circular Dichroism: Principles and Application (eds Barron, L. D. & Hecht, L.) 667–702 (Wiley-VCH, 2000).

    Google Scholar 

  22. Barron, L. D., Hecht, L., McColl, I. H. & Blanch, E. W. Raman optical activity comes of age. Mol. Phys. 102, 731–744 (2004).

    Article  CAS  Google Scholar 

  23. Adachi, K. et al. Chirality induction and amplification in methylene blue H-aggregates via D- and L-phenylalanine pre-adsorbed on the tungsten oxide nanocolloid surface. New J. Chem. 36, 2167–2170 (2012).

    Article  CAS  Google Scholar 

  24. Angeluts, A. A. et al. Second harmonic generation upon reflection of light from the surface of a solution of mirror-asymmetric molecules: a new tool for studies of molecular chirality. Opt. Spectrosc. 87, 151–156 (1999).

    Google Scholar 

  25. Borovkov, V. V., Lintuluoto, J. M., Fujiki, M. & Inoue, Y. Temperature effect on supramolecular chirality induction in bis(zinc porphyrin). J. Am. Chem. Soc. 122, 4403–4407 (2000).

    Article  CAS  Google Scholar 

  26. Borovkov, V. V., Yamamoto, N., Lintuluoto, J. M., Tanaka, T. & Inoue, Y. Supramolecular chirality induction in bis(zinc porphyrin) by amino acid derivatives: rationalization and applications of the ligand bulkiness effect. Chirality 13, 329–335 (2001).

    Article  CAS  Google Scholar 

  27. Chilaya, G. Induction of chirality in nematic phases. Rev. Phys. Appl. 16, 193–208 (1981).

    Article  CAS  Google Scholar 

  28. Chavan, S. P. & Khatod, H. S. Enantioselective synthesis of the essential oil and pheromonal component ar-himachalene by a chiral pool and chirality induction approach. Tetrahedron: Asymmetry 23, 1410–1415 (2012).

    Article  CAS  Google Scholar 

  29. Fireman-Shoresh, S., Marx, S. & Avnir, D. Induction and detection of chirality in doped sol–gel materials: NMR and circular dichroism studies. J. Mater. Chem. 17, 536–544 (2007).

    Article  CAS  Google Scholar 

  30. Ostovar pour, S., Bell, S. E. J. & Blanch, E. W. Use of a hydrogel polymer for reproducible surface enhanced Raman optical activity (SEROA). Chem. Commun. 47, 4754–4756 (2011).

    Article  Google Scholar 

  31. Abdali, S. & Blanch, E. W. Surface enhanced Raman optical activity (SEROA). Chem. Soc. Rev. 37, 980–992 (2008).

    Article  CAS  Google Scholar 

  32. Etchegoin, P. G., Galloway, C. & Le Ru, E. C. Polarization-dependent effects in surface-enhanced Raman scattering (SERS). Phys. Chem. Chem. Phys. 8, 2624–2628 (2006).

    Article  CAS  Google Scholar 

  33. Barron, L. D. Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, 2004).

    Book  Google Scholar 

  34. Nafie, L. A. Theory of resonance Raman optical activity: The single electronic state limit. Chem. Phys. 205, 309–322 (1996).

    Article  CAS  Google Scholar 

  35. Nafie, L. A. Vibrational Optical Activity: Principles and Applications (Wiley, 2011).

    Book  Google Scholar 

  36. Abdali, S., Johannessen, C., Nygaard, K. & Nørbygaard, T. Resonance surface enhanced Raman optical activity of myoglobin as a result of optimized resonance surface enhanced Raman scattering conditions. J. Phys. Condens. Matter 19, 285205 (2007).

    Article  Google Scholar 

  37. Abdulrahman, N. A. et al. Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures. Nano. Lett. 12, 977–983 (2012).

    Article  CAS  Google Scholar 

  38. Cao, T. et al. A comparison of the chiral counterion, solvent, and ligand used to induce a chiroptical response from Au25 nanoclusters. Nanoscale 5, 7589–7595 (2013).

    Article  CAS  Google Scholar 

  39. Liu, M. et al. Spontaneous chiral symmetry breaking in metamaterials. Nature Commun. 5, 4441 (2014).

    Article  CAS  Google Scholar 

  40. Iski, E. V., Tierney, H. L., Jewell, A. D. & Sykes, E. C. H. Spontaneous transmission of chirality through multiple length scales. Chem. Eur. J. 17, 7205–7212 (2011).

    Article  CAS  Google Scholar 

  41. Fabrikanos, V. A., Athanassiou, S. & Lieser, K. Dastelung stabiler hydrosole von gold und silber durch reduktion mit athylendiamintetraessingsaure. Z. Naturforsch. B 612–616 (1963).

  42. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  43. Frisch, M. J. et al. Gaussian 09, Revision D01 (Gaussian, 2009).

    Google Scholar 

  44. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  CAS  Google Scholar 

  45. Novák, V., Šebestík, J. & Bouř, P. Theoretical modeling of the surface-enhanced Raman optical activity. J. Chem. Theory Comput. 8, 1714–1720 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK Engineering and Physical Sciences Research Council (EP/P504325/1 and GR/S75727/01), the Royal Society of Chemistry Analytical Sciences Division Studentship Scheme (GR/T05554/01), the Academy of Sciences (M200551205), and the Grant Agency (P208/11/0105, 13-03978S) of the Czech Republic. The authors thank E. Smith, M. Kadodwala, E. Hendry, C. Johannessen, S. Webb and A. Doig for discussions and D.G. acknowledges the Royal Society for support from a Wolfson research merit award.

Author information

Authors and Affiliations

Authors

Contributions

E.B. directed the project. D.G. and K.F. led the nanoparticle preparation and characterization. P.B. led the computational modelling. S.O.P. performed the SERROA studies. S.O.P. and L.R. performed SERS and characterization experiments. V.P. performed computational modelling. All authors contributed to preparing the manuscript, with E.B. and S.O.P. being the main authors.

Corresponding authors

Correspondence to Petr Bouř or Ewan W. Blanch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 474 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostovar pour, S., Rocks, L., Faulds, K. et al. Through-space transfer of chiral information mediated by a plasmonic nanomaterial. Nature Chem 7, 591–596 (2015). https://doi.org/10.1038/nchem.2280

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2280

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing