Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Covalent bulk functionalization of graphene

Abstract

Graphene, a truly two-dimensional and fully π-conjugated honeycomb carbon network, is currently evolving into the most promising successor to silicon in micro- and nanoelectronic applications. However, its wider application is impeded by the difficulties in opening a bandgap in its gapless band-structure, as well as the lack of processability in the resultant intrinscially insoluble material. Covalent chemical modification of the π-electron system is capable of addressing both of these issues through the introduction of variable chemical decoration. Although there has been significant research activity in the field of functionalized graphene, most work to date has focused on the use of graphene oxide. In this Article, we report on the first wet chemical bulk functionalization route beginning with pristine graphite that does not require initial oxidative damage of the graphene basal planes. Through effective reductive activation, covalent functionalization of the charged graphene is achieved by organic diazonium salts. Functionalization was observed spectroscopically, and successfully prevents reaggregation while providing solubility in common organic media.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reaction scheme.
Figure 2: Raman and AFM experiments conducted at different stages of the reduction/exfoliation/functionalization sequence with BPD.
Figure 3: Spectral fingerprints of functionalization by BPD.
Figure 4: Spatial Raman intensity analysis and statistical Raman characterization of covalently functionalized graphene sheets.
Figure 5: HRTEM micrographs of functionalized graphene derivatives.

Similar content being viewed by others

References

  1. Novoselov, K. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. Allen, M., Tung, V. & Kaner, R. Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010).

    Article  CAS  Google Scholar 

  3. Park, S. & Ruoff, R. S. Chemical methods for the production of graphenes. Nature Nanotech. 4, 217–224 (2009).

    Article  CAS  Google Scholar 

  4. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).

    Article  CAS  Google Scholar 

  5. Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater. 8, 203 (2009).

    Article  CAS  Google Scholar 

  6. Englert, J. M. et al. Soluble graphene: generation of aqueous graphene solutions aided by a perylenebisimide-based bolaamphiphile. Adv. Mater. 21, 4265–4269 (2009).

    Article  CAS  Google Scholar 

  7. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).

    Article  CAS  Google Scholar 

  8. Staudenmaier, L. Verfahren zur Darstellung der Graphitsäure. Ber. Deutsch. Chem. Ges. 32, 1394–1399 (1899).

    Article  CAS  Google Scholar 

  9. Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  10. Lotya, M. et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009).

    Article  CAS  Google Scholar 

  11. Liu, H. et al. Photochemical reactivity of graphene. J. Am. Chem. Soc. 131, 17099–17101 (2009).

    Article  CAS  Google Scholar 

  12. Bekyarova, E. et al. Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. J. Am. Chem. Soc. 131, 1336–1337 (2009).

    Article  CAS  Google Scholar 

  13. Lomeda, J. R., Doyle, C. D., Kosynkin, D. V., Hwang, W-F. & Tour, J. M. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130, 16201–16206 (2008).

    Article  CAS  Google Scholar 

  14. Pan, Q., Wang, H. & Jiang, Y. Covalent modification of natural graphite with lithium benzoate multilayers via diazonium chemistry and their application in lithium ion batteries. Electrochem. Commun. 9, 754–760 (2007).

    Article  CAS  Google Scholar 

  15. Sharma, R., Baik, J. H., Perera, C. J. & Strano, M. S. Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett. 10, 398 (2010).

    Article  CAS  Google Scholar 

  16. Sun, Z., Kohama, S-i., Zhang, Z., Lomeda, J. R. & Tour, J. M. Soluble graphene through edge-selective functionalization. Nano Res. 3, 117 (2010).

    Article  CAS  Google Scholar 

  17. Zhu, Y., Higginbotham, A. L. & Tour, J. M. Covalent functionalization of surfactant-wrapped graphene nanoribbons. Chem. Mater. 21, 5284–5291 (2009).

    Article  CAS  Google Scholar 

  18. Kudin, K. N. et al. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36–41 (2008).

    Article  CAS  Google Scholar 

  19. Syrgiannis, Z. et al. Reductive retrofunctionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 49, 3322–3325 (2010).

    Article  CAS  Google Scholar 

  20. Liang, F. et al. A convenient route to functionalized carbon nanotubes. Nano Lett. 4, 1257–1260 (2004).

    Article  CAS  Google Scholar 

  21. Billups, W. E., Liang, F., Chattopadhyay, J. & Beach, J. M. Uses of single wall carbon nanotube salts in organic syntheses. ECS Trans. 2, 65–76 (2007).

    Article  Google Scholar 

  22. Wunderlich, D., Hauke, F. & Hirsch, A. Preferred functionalization of metallic and small-diameter single walled carbon nanotubes via reductive alkylation. J. Mater. Chem. 18, 1493–1497 (2008).

    Article  CAS  Google Scholar 

  23. Haddon, R. C. π-electrons in three dimensions. Acc. Chem. Res. 21, 243–249 (1988).

    Article  CAS  Google Scholar 

  24. Haddon, R. C. C60: sphere or polyhedron? J. Am. Chem. Soc. 119, 1797–1798 (1997).

    Article  CAS  Google Scholar 

  25. Chen, Z., Thiel, W. & Hirsch, A. Reactivity of the convex and concave surfaces of single-walled carbon nanotubes (SWCNTs) towards addition reactions: dependence on the carbon-atom pyramidalization. ChemPhysChem 4, 93–97 (2003).

    Article  CAS  Google Scholar 

  26. Stephenson, J. J., Sadana, A. K., Higginbotham, A. L. & Tour, J. M. Highly functionalized and soluble multiwalled carbon nanotubes by reductive alkylation and arylation: the Billups reaction. Chem. Mater. 18, 4658–4661 (2006).

    Article  CAS  Google Scholar 

  27. Strano, M. S. et al. Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519–1522 (2003).

    Article  CAS  Google Scholar 

  28. Sinitskii, A. et al. Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4, 1949–1954 (2010).

    Article  CAS  Google Scholar 

  29. Sharma, R., Nair, N. & Strano, M. S. Structure–reactivity relationships for graphene nanoribbons. J. Phys. Chem. C 113, 14771–14777 (2009).

    Article  CAS  Google Scholar 

  30. Usrey, M. L., Lippmann, E. S. & Strano, M. S. Evidence for a two-step mechanism in electronically selective single-walled carbon nanotube reactions. J. Am. Chem. Soc. 127, 16129–16135 (2005).

    Article  CAS  Google Scholar 

  31. Fantini, C., Pimenta, M. A. & Strano, M. S. Two-phonon combination Raman modes in covalently functionalized single-wall carbon nanotubes. J. Phys. Chem. C 112, 13150–13155 (2008).

    Article  CAS  Google Scholar 

  32. Rüdorff, W. Einlagerungsverbindungen mit Alkali- und Erdalkalimetallen. Angew. Chem. 71, 487–491 (1959).

    Article  Google Scholar 

  33. Rüdorff, W. & Schulze, E. Über Alkaligraphitverbindungen. Z. Anorg. Allg. Chem. 277, 156–171 (1954).

    Article  Google Scholar 

  34. Ginderow, D. Preparation of insertion compounds in graphite from liquid reagents. Ann. Chim. 6, 5–16 (1971).

    CAS  Google Scholar 

  35. Vallés, C. et al. Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 130, 15802–15804 (2008).

    Article  Google Scholar 

  36. Allongue, P. et al. Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. J. Am. Chem. Soc. 119, 201–207 (1997).

    Article  CAS  Google Scholar 

  37. Viculis, L. M., Mack, J. J. & Kaner, R. B. A chemical route to carbon nanoscrolls. Science 299, 1361 (2003).

    Article  CAS  Google Scholar 

  38. Schniepp, H. C. et al. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006).

    Article  CAS  Google Scholar 

  39. Erickson, K. et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 22, 4467–4472 (2010).

    Article  CAS  Google Scholar 

  40. Ferrari, A. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  41. Abergel, D. S. L., Russell, A. & Fal'ko, V. I. Visibility of graphene flakes on a dielectric substrate. Appl. Phys. Lett. 91, 063125 (2007).

    Article  Google Scholar 

  42. Blake, P. et al. Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007).

    Article  Google Scholar 

  43. Solin, S. A. Raman and IR studies of intercalated graphite. Physica 99B, 443–453 (1980).

    Google Scholar 

  44. Berciaud, S., Ryu, S., Brus, L. E. & Heinz, T. F. Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett. 9, 346–352 (2009).

    Article  CAS  Google Scholar 

  45. Nemanich, R. J., Glass, J. T., Lucovsky, G. & Shroder, R. E. Raman scattering characterization of carbon bonding in diamond and diamondlike thin films. J. Vac. Sci. Technol. A 6, 1783–1787 (1988).

    Article  CAS  Google Scholar 

  46. Ferrari, A. C. & Robertson, J. Origin of the 1150 cm−1 Raman mode in nanocrystalline diamond. Phys. Rev. B 63, 121405 (2001).

    Article  Google Scholar 

  47. Graf, D. et al. Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 7, 238–242 (2007).

    Article  CAS  Google Scholar 

  48. Basko, D. M. Effect of inelastic collisions on multiphonon Raman scattering in graphene. Phys. Rev. B 76, 081405 (2007).

    Article  Google Scholar 

  49. Jung, N. et al. Charge transfer chemical doping of few layer graphenes: charge distribution and band gap formation. Nano Lett. 9, 4133–4137 (2009).

    Article  CAS  Google Scholar 

  50. Lindberg, B. J. et al. Molecular spectroscopy by means of ESCA. II. Sulfur compounds. Correlation of electron binding energy with structure. Phys. Scripta 1, 286 (1970).

    Article  CAS  Google Scholar 

  51. Ruangchuay, L., Schwank, J. & Sirivat, A. Surface degradation of α-naphthalene sulfonate-doped polypyrrole during XPS characterization. Appl. Surf. Sci. 199, 128 (2002).

    Article  CAS  Google Scholar 

  52. Tour, J. M. et al. Self-assembled monolayers and multilayers of conjugated thiols, α,w-dithiols, and thioacetyl-containing adsorbates. Understanding attachments between potential molecular wires and gold surfaces. J. Am. Chem. Soc. 117, 9529 (1995).

    Article  CAS  Google Scholar 

  53. Buchner, F. et al. Coordination of iron atoms by tetraphenylporphyrin monolayers and multilayers on Ag(111) and formation of iron-tetraphenylporphyrin. J. Phys. Chem. C 112, 15458 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft (DFG), the Interdisciplinary Center for Molecular Materials (ICMM), the European Research Council (ERC; grant 246622 — GRAPHENOCHEM), the Graduate School Molecular Science (GSMS) and the Cluster of Excellence ‘Engineering of Advanced Materials (EAM)’ for financial support.

Author information

Authors and Affiliations

Authors

Contributions

F.H. and A.H. supervised the project as scientific group leader and principal investigator. J.M.E. worked out the concept, synthesized all compounds, carried out Raman, absorption, emission, IR and NMR spectroscopy, and performed AFM, SRM and optical microscopy. C.D. carried out TGA/MS characterization. E.S. and G.Y. conducted HRTEM and EDX investigations. M.S., C.P., J.M.G. and H.-P.S. carried out XPS analysis. A.H., F.H. and J.M.E. wrote the manuscript.

Corresponding author

Correspondence to Andreas Hirsch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4207 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Englert, J., Dotzer, C., Yang, G. et al. Covalent bulk functionalization of graphene. Nature Chem 3, 279–286 (2011). https://doi.org/10.1038/nchem.1010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1010

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing