Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reaper eliminates IAP proteins through stimulated IAP degradation and generalized translational inhibition

Abstract

Inhibitors of apoptosis (IAPs) inhibit caspases, thereby preventing proteolysis of apoptotic substrates. IAPs occlude the active sites of caspases to which they are bound1,2,3 and can function as ubiquitin ligases. IAPs are also reported to ubiquitinate themselves and caspases4,5. Several proteins induce apoptosis, at least in part, by binding and inhibiting IAPs. Among these are the Drosophila melanogaster proteins Reaper (Rpr), Grim, and HID, and the mammalian proteins Smac/Diablo and Omi/HtrA2, all of which share a conserved amino-terminal IAP-binding motif6,7,8,9,10,11,12,13,14. We report here that Rpr not only inhibits IAP function, but also greatly decreases IAP abundance. This decrease in IAP levels results from a combination of increased IAP degradation and a previously unrecognized ability of Rpr to repress total protein translation. Rpr-stimulated IAP degradation required both IAP ubiquitin ligase activity and an unblocked Rpr N terminus. In contrast, Rpr lacking a free N terminus still inhibited protein translation. As the abundance of short-lived proteins are severely affected after translational inhibition, the coordinated dampening of protein synthesis and the ubiquitin-mediated destruction of IAPs can effectively reduce IAP levels to lower the threshold for apoptosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rpr stimulates IAP auto-ubiquitination and destruction.
Figure 2: XLX, a X. laevis XIAP homologue, is destabilized by Rpr peptide, but not by GST–Rpr.
Figure 3: An unblocked Rpr N terminus is required for IAP binding and stabilization.
Figure 4: Rpr does not destabilize the XIAPH467A ubiquitin ligase mutant.
Figure 5: Repression of translation by GST–Rpr and Rpr peptide.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Riedl, S. J. et al. Cell 104, 791– 800 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Huang, Y. et al. Cell 104, 781– 790 (2001).

    CAS  PubMed  Google Scholar 

  3. Chai, J. et al. Cell 104, 769– 780 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Yang, Y., Fang, S., Jensen, J. P., Weissman, A. M. & Ashwell, J. D. Science 288, 874– 877 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Huang, H. et al. J. Biol. Chem. 275, 26661– 26664 (2000).

    CAS  PubMed  Google Scholar 

  6. White, K., et al. Science 264, 677– 683 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Goyal, L., McCall, K., Agapite, J., Hartwieg, E. & Steller, H. EMBO J. 19, 589– 597 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu, G. et al. Nature 408, 1008– 1012 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Wu, J. W., Cocina, A. E., Chai, J., Hay, B. A. & Shi, Y. Mol. Cell 8, 95– 104 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Verhagen, A. M. et al. Cell 102, 43– 53 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki, Y. et al. Mol. Cell 8, 613– 621 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Martins, L. M. et al. J. Biol. Chem. 277, 439– 444 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, P., Nordstrom, W., Gish, B. & Abrams, J. M. Genes Dev. 10, 1773– 1782 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Grether, M. E., Abrams, J. M., Agapite, J., White, K. & Steller, H. Genes Dev. 9, 1694– 1708 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Newmeyer, D. D., Farschon, D. M. and Reed J. C. Cell 79, 353– 364 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Glotzer, M., Murray, A. & Kirschner, M. Nature 349, 132– 138 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Avdonin, V. et al. Proc. Natl Acad. Sci. USA 95, 11703– 11708 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Richter, B. W. & Duckett, C. S. Science STKE [online] (cited 8 August 2000) http://stke.sciencemag.org/cgi/content/full/OC_sigtrans;2000/44/pe1 (2000).

  19. Clem, R. J. et al. J. Biol. Chem. 276, 7602– 7608 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Deveraux, Q. L. et al. EMBO J. 18, 5242– 5251 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Evans, E. K. et al. EMBO J. 16, 7372– 7381 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Swenson, K. I., Jordan, J. R., Beyer, E. C. & Paul, D. L. Cell 57, 145– 155 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Ryoo, H.D. et al. Nature Cell Biol. DOI:10.1038/ncb795.

  24. Hays, R. et al. Nature Cell Biol. DOI:10.1038/ncb794.

  25. Wing, J.P. et al. Nature Cell Biol. DOI:10.1038/ncb800.

  26. Yoo, S.J. et al. Nature Cell Biol. DOI:10.1038/ncb793.

Download references

Acknowledgements

We thank B. Kaplan for his generous provision of the Rpr peptide. We are grateful to B. Hay for provision of DIAP clones and for helpful discussion. We thank C. Duckett for generously providing XIAP-expression clones. We also thank B. Mayer for the Xenopus cDNA library and M. Hardwick for providing the c-IAP clone. This work was supported by a National Institutes of Health grant to S.K. (RO1 GM61919). S.K. is a Scholar of the Leukemia and Lymphoma Society. D.C.R. is a Gates Millenium Fellow. C.H. and M.O. are predoctoral fellows of the US Army Medical Research and Material Command Breast Cancer Research Program, as well as the NIH Medical Scientist Training Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally Kornbluth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holley, C., Olson, M., Colón-Ramos, D. et al. Reaper eliminates IAP proteins through stimulated IAP degradation and generalized translational inhibition. Nat Cell Biol 4, 439–444 (2002). https://doi.org/10.1038/ncb798

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb798

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing