Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The CHK2–BRCA1 tumour suppressor pathway ensures chromosomal stability in human somatic cells

Abstract

Chromosomal instability (CIN) is a major hallmark of human cancer and might contribute to tumorigenesis1. Genes required for the normal progression of mitosis represent potential CIN genes and, as such, are important tumour suppressors. The Chk2 kinase and its downstream targets p53 and Brca1 are tumour suppressors that have been functionally linked to the DNA damage response pathway2. Here, we report a function of Chk2, independent of p53 and DNA damage, that is required for proper progression of mitosis, and for the maintenance of chromosomal stability in human somatic cells. Depletion of Chk2 or abrogation of its kinase activity causes abnormal mitotic spindle assembly associated with a delay in mitosis, which promotes the generation of lagging chromosomes, chromosome missegregation and CIN, while still allowing survival and growth. Furthermore, we have identified Brca1 as a mitotic target of the Chk2 kinase in the absence of DNA damage. Accordingly, loss of BRCA1 or its Chk2-mediated phosphorylation leads to spindle formation defects and CIN. Thus, the CHK2–BRCA1 tumour suppressor pathway is required for chromosomal stability, which might contribute to their tumour suppressor function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CHK2 is required for chromosomal stability.
Figure 2: Chk2 is required for timely progression of mitosis.
Figure 3: Chk2 is required for normal mitotic spindle assembly.
Figure 4: Loss of CHK2 results in mal-oriented lagging chromosomes that are suppressed by MCAK expression.
Figure 5: Chk2-mediated Brca1 phosphorylation is required for mitotic spindle formation and chromosomal stability.

Similar content being viewed by others

References

  1. Holland, A. J. & Cleveland, D. W. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nature Rev. Mol. Cell Biol. 10, 478–487 (2009).

    Article  CAS  Google Scholar 

  2. Kastan, M. B. & Bartek, J. Cell-cycle checkpoints and cancer. Nature 432, 316–323 (2004).

    Article  CAS  Google Scholar 

  3. Antoni, L., Sodha, N., Collins, I. & Garrett, M. D. CHK2 kinase: cancer susceptibility and cancer therapy - two sides of the same coin? Nature Rev. Cancer 7, 925–936 (2007).

    Article  CAS  Google Scholar 

  4. Bartek, J. & Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3, 421–429 (2003).

    Article  CAS  Google Scholar 

  5. Jallepalli, P. V., Lengauer, C., Vogelstein, B. & Bunz, F. The Chk2 tumor suppressor is not required for p53 responses in human cancer cells. J. Biol. Chem. 278, 20475–20479 (2003).

    Article  CAS  Google Scholar 

  6. Bunz, F. et al. Targeted inactivation of p53 in human cells does not result in aneuploidy. Cancer Res. 62, 1129–1133 (2002).

    CAS  PubMed  Google Scholar 

  7. Rajagopalan, H. & Lengauer, C. Aneuploidy and cancer. Nature 432, 338–341 (2004).

    Article  CAS  Google Scholar 

  8. Michel, L. S. et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409, 355–359 (2001).

    Article  CAS  Google Scholar 

  9. Ricke, R. M., van Ree, J. H. & van Deursen, J. M. Whole chromosome instability and cancer: a complex relationship. Trends Genet. 24, 457–466 (2008).

    Article  CAS  Google Scholar 

  10. Kishimoto, Y., Murakami, Y., Shiraishi, M., Hayashi, K. & Sekiya, T. Aberrations of the p53 tumor suppressor gene in human non-small cell carcinomas of the lung. Cancer Res. 52, 4799–4804 (1992).

    CAS  PubMed  Google Scholar 

  11. Gazdar, A. F. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 28 Suppl 1, S24–S31 (2009).

    Article  CAS  Google Scholar 

  12. Herbst, R. S., Heymach, J. V. & Lippman, S. M. Lung cancer. N. Engl. J. Med. 359, 1367–1380 (2008).

    Article  CAS  Google Scholar 

  13. Weaver, B. A., Silk, A. D., Montagna, C., Verdier-Pinard, P. & Cleveland, D. W. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11, 25–36 (2007).

    Article  CAS  Google Scholar 

  14. Kapoor, T. M., Mayer, T. U., Coughlin, M. L. & Mitchison, T. J. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J. Cell Biol. 150, 975–988 (2000).

    Article  CAS  Google Scholar 

  15. Bakhoum, S. F., Thompson, S. L., Manning, A. L. & Compton, D. A. Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nature Cell Biol. 11, 27–35 (2009).

    Article  CAS  Google Scholar 

  16. Silkworth, W. T., Nardi, I. K., Scholl, L. M. & Cimini, D. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PloS One 4, e6564 (2009).

    Article  Google Scholar 

  17. Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).

    Article  CAS  Google Scholar 

  18. Thompson, S. L. & Compton, D. A. Examining the link between chromosomal instability and aneuploidy in human cells. J. Cell Biol. 180, 665–672 (2008).

    Article  CAS  Google Scholar 

  19. Cimini, D. Merotelic kinetochore orientation, aneuploidy, and cancer. Biochim. Biophys. Acta 1786, 32–40 (2008).

    CAS  PubMed  Google Scholar 

  20. Schwarz, J. K., Lovly, C. M. & Piwnica-Worms, H. Regulation of the Chk2 protein kinase by oligomerization-mediated cis- and trans-phosphorylation. Mol. Cancer Res. 1, 598–609 (2003).

    CAS  PubMed  Google Scholar 

  21. Ahn, J., Urist, M. & Prives, C. The Chk2 protein kinase. DNA Repair (Amst) 3, 1039–1047 (2004).

    Article  CAS  Google Scholar 

  22. Zhang, J. et al. Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol. Cell Biol. 24, 708–718 (2004).

    Article  CAS  Google Scholar 

  23. Okada, S. & Ouchi, T. Cell cycle differences in DNA damage-induced BRCA1 phosphorylation affect its subcellular localization. J. Biol. Chem. 278, 2015–2020 (2003).

    Article  CAS  Google Scholar 

  24. Joukov, V. et al. The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell 127, 539–552 (2006).

    Article  CAS  Google Scholar 

  25. Pujana, M. A. et al. Network modeling links breast cancer susceptibility and centrosome dysfunction. Nature Genet. 39, 1338–1349 (2007).

    Article  CAS  Google Scholar 

  26. Wolf-Yadlin, A., Hautaniemi, S., Lauffenburger, D. A. & White, F. M. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc. Natl Acad. Sci. USA 104, 5860–5865 (2007).

    Article  CAS  Google Scholar 

  27. Kops, G. J., Foltz, D. R. & Cleveland, D. W. Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc. Natl Acad. Sci. USA 101, 8699–8704 (2004).

    Article  CAS  Google Scholar 

  28. Baker, D. J., Jin, F., Jeganathan, K. B. & van Deursen, J. M. Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell 16, 475–486 (2009).

    Article  CAS  Google Scholar 

  29. Voorhoeve, P. M. & Agami, R. The tumor-suppressive functions of the human INK4A locus. Cancer Cell 4, 311–319 (2003).

    Article  CAS  Google Scholar 

  30. Lee, J. S., Collins, K. M., Brown, A. L., Lee, C. H. & Chung, J. H. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404, 201–204 (2000).

    Article  CAS  Google Scholar 

  31. Stolz, A. et al. Pharmacologic abrogation of the mitotic spindle checkpoint by an indolocarbazole discovered by cellular screening efficiently kills cancer cells. Cancer Res. 69, 3874–3883 (2009).

    Article  CAS  Google Scholar 

  32. Hiyama, T. et al. Haploinsufficiency of the Mus81-Eme1 endonuclease activates the intra-S-phase and G2/M checkpoints and promotes rereplication in human cells. Nucleic Acids Res. 34, 880–892 (2006).

    Article  CAS  Google Scholar 

  33. de Godoy, L. M. et al. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455, 1251–1254 (2008).

    Article  CAS  Google Scholar 

  34. Schwanhausser, B., Gossen, M., Dittmar, G. & Selbach, M. Global analysis of cellular protein translation by pulsed SILAC. Proteomics 9, 205–209 (2009).

    Article  Google Scholar 

  35. Fritz, B. et al. Pigmentary mosaicism in hypomelanosis of Ito. Further evidence for functional disomy of Xp. Hum. Genet. 103, 441–449 (1998).

    Article  CAS  Google Scholar 

  36. Denkert, C. et al. Elevated expression of cyclooxygenase-2 is a negative prognostic factor for disease free survival and overall survival in patients with breast carcinoma. Cancer 97, 2978–2987 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Robert Benezra, Loren Michel, Prasad Jallepalli, Bert Vogelstein, Jiri Lukas, Stephen Taylor, Reuven Agami, Fen Xia, Junjie Chen, Sylvie Mazoyer, Jay Chung, Michael Brandeis, Linda Wordeman and Duane Compton for providing cell lines, antibodies and plasmids. We thank Robert J. Schultz (Developmental Therapeutics Program of the National Cancer Institute, USA) for the gift of UCN-01, and Rolf Müller and Alexandra Elli for support. We are grateful to Heike Krebber and Matthias Dobbelstein for comments on the manuscript. This work was supported by a grant and a Heisenberg fellowship to H.B. from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Contributions

A.S., N.E., A.K., C.V. and V.S. performed and analysed most experiments; B.F. performed the M-FISH experiments; R.J. supported the live-cell analyses; G.D. performed the MRM analyses; W.W. and I.P. performed and analysed the immunohistochemisty on human tumour samples; H.B. designed and coordinated the study, performed experiments, analysed data and wrote the manuscript. All authors discussed the work and commented on the manuscript.

Corresponding author

Correspondence to Holger Bastians.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1488 kb)

Supplementary Information

Supplementary Information Movie 1 (AVI 2025 kb)

Supplementary Information

Supplementary Information Movie 2 (AVI 327 kb)

Supplementary Information

Supplementary Information Movie 3 (AVI 180 kb)

Supplementary Information

Supplementary Information Movie 4 (AVI 142 kb)

Supplementary Information

Supplementary Information Movie 5 (AVI 242 kb)

Supplementary Information

Supplementary Information Movie 6 (AVI 220 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stolz, A., Ertych, N., Kienitz, A. et al. The CHK2–BRCA1 tumour suppressor pathway ensures chromosomal stability in human somatic cells. Nat Cell Biol 12, 492–499 (2010). https://doi.org/10.1038/ncb2051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2051

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing