Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

BCOR regulates mesenchymal stem cell function by epigenetic mechanisms

Abstract

The BCL-6 co-repressor (BCOR) represses gene transcription by interacting with BCL-6 (Refs 1, 2). BCOR mutation is responsible for oculo-facio-cardio-dental (OFCD) syndrome, which is characterized by canine teeth with extremely long roots, congenital cataracts, craniofacial defects and congenital heart disease3,4,5. Here we show that BCOR mutation increased the osteo-dentinogenic potential of mesenchymal stem cells (MSCs) isolated from a patient with OFCD, providing a molecular explanation for abnormal root growth. AP-2α was identified as a repressive target of BCOR, and BCOR mutation resulted in abnormal activation of AP-2α. Gain- and loss-of-function assays suggest that AP-2α is a key factor that mediates the increased osteo-dentinogenic capacity of MSCs. Moreover, we found that BCOR maintained tissue homeostasis and gene silencing through epigenetic mechanisms. BCOR mutation increased histone H3K4 and H3K36 methylation in MSCs, thereby reactivating transcription of silenced target genes. By studying a rare human genetic disease, we have unravelled an epigenetic mechanism for control of human adult stem cell function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BCOR mutation results in enhanced osteo-dentinogenic potential of MSCs from a patient with OFCD.
Figure 2: Restoration of wild-type BCOR in MSC-O cells inhibited cell differentiation and proliferation.
Figure 3: BCOR mutation increases AP-2α expression in MSC-O cells.
Figure 4: AP-2α is a key mediator of the enhanced osteo-dentinogenic potential of MSCs by BCOR mutation.
Figure 5: BCOR represses AP-2α transcription by epigenetic mechanisms.

Similar content being viewed by others

References

  1. Huynh, K. D., Fischle, W., Verdin, E. & Bardwell, V. J. BCoR, a novel co-repressor involved in BCL-6 repression. Genes Dev. 14, 1810–1823 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ghetu, A. F. et al. Structure of a BCOR co-repressor peptide in complex with the BCL-6 BTB domain dimer. Mol. Cell 29, 384–391 (2008).

    Article  CAS  Google Scholar 

  3. Ng, D. et al. Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nature Genet. 36, 411–416 (2004).

    Article  CAS  Google Scholar 

  4. Oberoi, S., Winder, A. E., Johnston, J., Vargervik, K. & Slavotinek, A. M. Case reports of oculofaciocardiodental syndrome with unusual dental findings. Am. J. Med. Genet. A. 136, 275–277 (2005).

    Article  Google Scholar 

  5. Horn, D. et al. Novel mutations in BCOR in three patients with oculo-facio-cardio-dental syndrome, but none in Lenz microphthalmia syndrome. Eur. J. Hum. Genet. 13, 563–569 (2005).

    Article  CAS  Google Scholar 

  6. Hedera, P. & Gorski, J. L. Oculo-facio-cardio-dental syndrome: skewed X chromosome inactivation in mother and daughter suggest X-linked dominant Inheritance. Am. J. Med. Genet. A. 123A, 261–266 (2003).

    Article  Google Scholar 

  7. Schulze, B. R., Horn, D., Kobelt, A., Tariverdian, G. & Stellzig, A. Rare dental abnormalities seen in oculo-facio-cardio-dental (OFCD) syndrome: three new cases and review of nine patients. Am. J. Med. Genet. 82, 429–435 (1999).

    Article  CAS  Google Scholar 

  8. Foster, B. L., Popowics, T. E., Fong, H. K. & Somerman, M. J. Advances in defining regulators of cementum development and periodontal regeneration. Curr. Top. Dev. Biol. 78, 47–126 (2007).

    Article  CAS  Google Scholar 

  9. Kim, J. W. & Simmer, J. P. Hereditary dentin defects. J. Dent. Res. 86, 392–399 (2007).

    Article  CAS  Google Scholar 

  10. MacDougall, M., Dong, J. & Acevedo, A. C. Molecular basis of human dentin diseases. Am. J. Med. Genet. A. 140, 2536–2546 (2006).

    Article  Google Scholar 

  11. Sonoyama, W. et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS ONE 1, e79 (2006).

    Article  Google Scholar 

  12. Ye, B. H. et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 262, 747–750 (1993).

    Article  CAS  Google Scholar 

  13. Gearhart, M. D., Corcoran, C. M., Wamstad, J. A. & Bardwell, V. J. Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol. Cell Biol. 26, 6880–6889 (2006).

    Article  CAS  Google Scholar 

  14. Sanchez, C. et al. Proteomics analysis of Ring1B/Rnf2 interactors identifies a novel complex with the Fbxl10/Jhdm1B histone demethylase and the Bcl6 interacting corepressor. Mol. Cell Proteomics 6, 820–834 (2007).

    Article  CAS  Google Scholar 

  15. Wamstad, J. A. & Bardwell, V. J. Characterization of Bcor expression in mouse development. Gene Expr. Patterns 7, 550–557 (2007).

    Article  CAS  Google Scholar 

  16. Wamstad, J. A., Corcoran, C. M., Keating, A. M. & Bardwell, V. J. Role of the transcriptional corepressor Bcor in embryonic stem cell differentiation and early embryonic development. PLoS ONE 3, e2814 (2008).

    Article  Google Scholar 

  17. Jahagirdar, B. N. & Verfaillie, C. M. Multipotent adult progenitor cell and stem cell plasticity. Stem Cell Rev. 1, 53–59 (2005).

    Article  CAS  Google Scholar 

  18. Phinney, D. G. & Prockop, D. J. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 25, 2896–2902 (2007).

    Article  Google Scholar 

  19. Scaffidi, P. & Misteli, T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nature Cell Biol. 10, 452–459 (2008).

    Article  CAS  Google Scholar 

  20. Shi, S. et al. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nature Biotechnol. 20, 587–591 (2002).

    Article  CAS  Google Scholar 

  21. Shi, S. & Wang, C. Y. Bone marrow stromal stem cells for repairing the skeleton. Biotechnol. Genet. Eng. Rev. 21, 133–143 (2004).

    Article  Google Scholar 

  22. Seo, B. M. et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364, 149–155 (2004).

    Article  CAS  Google Scholar 

  23. Arthur, A., Rychkov, G., Shi, S., Koblar, S. A. & Gronthos, S. Adult human dental pulp stem cells differentiate towards functionally active neurons under appropriate environmental cues. Stem Cells (2008).

  24. Chang, J. et al. Noncanonical Wnt-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J. Biol. Chem. 282, 30938–30948 (2007).

    Article  CAS  Google Scholar 

  25. Butler, W. T., Brunn, J. C. & Qin, C. Dentin extracellular matrix (ECM) proteins: comparison to bone ECM and contribution to dynamics of dentinogenesis. Connect. Tissue Res. 44 Suppl 1, 171–178 (2003).

    Article  CAS  Google Scholar 

  26. Scheller, E. L., Chang, J. & Wang, C. Y. Wnt/β-catenin inhibits dental pulp stem cell differentiation. J. Dent. Res. 87, 126–130 (2008).

    Article  CAS  Google Scholar 

  27. Schorle, H., Meier, P., Buchert, M., Jaenisch, R. & Mitchell, P. J. Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature 381, 235–238 (1996).

    Article  CAS  Google Scholar 

  28. Brewer, S., Feng, W., Huang, J., Sullivan, S. & Williams, T. Wnt1-Cre-mediated deletion of AP-2α causes multiple neural crest-related defects. Dev. Biol. 267, 135–152 (2004).

    Article  CAS  Google Scholar 

  29. Frescas, D., Guardavaccaro, D., Bassermann, F., Koyama-Nasu, R. & Pagano, M. JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature 450, 309–313 (2007).

    Article  CAS  Google Scholar 

  30. Tsukada, Y. et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816 (2006).

    Article  CAS  Google Scholar 

  31. Shi, Y. & Whetstine, J. R. Dynamic regulation of histone lysine methylation by demethylases. Mol. Cell 25, 1–14 (2007).

    Article  CAS  Google Scholar 

  32. Klose, R. J., Kallin, E. M. & Zhang, Y. JmjC-domain-containing proteins and histone demethylation. Nature Rev. Genet. 7, 715–727 (2006).

    Article  CAS  Google Scholar 

  33. He, J., Kallin, E. M., Tsukada, Y. & Zhang, Y. The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nature Struct. Mol. Biol. 15, 1169–1175 (2008).

    Article  CAS  Google Scholar 

  34. West-Mays, J. A., Coyle, B. M., Piatigorsky, J., Papagiotas, S. & Libby, D. Ectopic expression of AP-2α transcription factor in the lens disrupts fiber cell differentiation. Dev. Biol. 245, 13–27 (2002).

    Article  CAS  Google Scholar 

  35. Park, B.K. et al. NFκB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GMCSF. Nature Med. 13, 62–69 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Dental and Craniofacial Research Grants (R01DE1016513 and R01DE017684) to C.Y.W. (R21DE017632) and S.S., and the Shapiro Family Charitable Foundation. We thank Vivian Bardwell for reagents.

Author information

Authors and Affiliations

Authors

Contributions

Z.F., T.Y. and J.Y. performed experiments and prepared figures; J.S.L. prepared samples and directed the experiments; G.F. and S.W. assisted with the genetic analysis; S.S. and C.Y.W. designed the experiments and analysed the data; C.Y.W. wrote the manuscript.

Corresponding author

Correspondence to Cun-Yu Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 736 kb)

Supplementary Information

Supplementary Table 1 (XLS 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Z., Yamaza, T., Lee, J. et al. BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat Cell Biol 11, 1002–1009 (2009). https://doi.org/10.1038/ncb1913

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1913

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing