Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death

Abstract

Mitochondria are critically involved in necrotic cell death induced by Ca2+ overload, hypoxia and oxidative damage. The mitochondrial permeability transition (MPT) pore — a protein complex that spans both the outer and inner mitochondrial membranes — is considered the mediator of this event and has been hypothesized to minimally consist of the voltage-dependent anion channel (Vdac) in the outer membrane, the adenine-nucleotide translocase (Ant) in the inner membrane and cyclophilin-D in the matrix1,2,3. Here, we report the effects of deletion of the three mammalian Vdac genes on mitochondrial-dependent cell death. Mitochondria from Vdac1-, Vdac3-, and Vdac1Vdac3-null mice exhibited a Ca2+- and oxidative stress-induced MPT that was indistinguishable from wild-type mitochondria. Similarly, Ca2+- and oxidative-stress-induced MPT and cell death was unaltered, or even exacerbated, in fibroblasts lacking Vdac1, Vdac2, Vdac3, Vdac1–Vdac3 and Vdac1–Vdac2–Vdac3. Wild-type and Vdac-deficient mitochondria and cells also exhibited equivalent cytochrome c release, caspase cleavage and cell death in response to the pro-death Bcl-2 family members Bax and Bid. These results indicate that Vdacs are dispensable for both MPT and Bcl-2 family member-driven cell death.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitochondrial permeability transition in Vdac1- and Vdac3-deficient mitochondria.
Figure 2: Cytochrome c release induced by Ca2+, oxidative stress, Bax and tBid.
Figure 3: Mitochondrial permeability transition and cell death in Vdac1- and Vdac3-null MEFs.
Figure 4: Cell death in Vdac-deficient MEFs.
Figure 5: MPT and cell death in Vdac2-null fibroblasts and in MEFs deficient in Vdac proteins.

Similar content being viewed by others

References

  1. Zamzami, N. & Kroemer G. The mitochondrion in apoptosis: how Pandora's box opens. Nature Rev. Mol. Cell. Biol. 2, 67–71 (2001).

    Article  CAS  Google Scholar 

  2. Crompton, M., Barksby, E., Johnson, N. & Capano, M. Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie 84, 143–152 (2002).

    Article  CAS  Google Scholar 

  3. Halestrap, A. P. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem. Soc. Trans. 34, 232–237 (2006).

    Article  CAS  Google Scholar 

  4. Rostovtseva, T. K., Tan, W. & Colombini, M. On the role of VDAC in apoptosis: fact and fiction. J. Bioenerg. Biomembr. 37, 129–142 (2005).

    Article  CAS  Google Scholar 

  5. Blachly-Dyson. E. & Forte, M. VDAC channels. IUBMB Life 52, 113–118 (2001).

    Article  CAS  Google Scholar 

  6. Wu, S., Sampson, M. J., Decker, W. K. & Craigen, W. J. Each mammalian mitochondrial outer membrane porin protein is dispensable: effects on cellular respiration. Biochim. Biophys. Acta. 1452, 68–78 (1999).

    Article  CAS  Google Scholar 

  7. Anflous, K., Armstrong, D. D. & Craigen, W. J. Altered mitochondrial sensitivity for ADP and maintenance of creatine-stimulated respiration in oxidative striated muscles from VDAC1-deficient mice. J. Biol. Chem. 276, 1954–1960 (2001).

    Article  CAS  Google Scholar 

  8. Sampson, M. J. et al. Immotile sperm and infertility in mice lacking mitochondrial voltage-dependent anion channel type 3. J. Biol. Chem. 276, 39206–39212 (2001).

    Article  CAS  Google Scholar 

  9. Krauskopf, A., Eriksson, O., Craigen, W. J., Forte, M. A. & Bernardi, P. Properties of the permeability transition in VDAC1−/− mitochondria. Biochim. Biophys. Acta. 1757, 590–595 (2006).

    Article  CAS  Google Scholar 

  10. Sheiko, T. V., Fisher, J. K., Craigen, W. J. & Korsmeyer, S. J. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301, 513–517 (2003).

    Article  Google Scholar 

  11. Banerjee, J. & Ghosh, S. Bax increases the pore size of rat brain mitochondrial voltage-dependent anion channel in the presence of tBid. Biochem. Biophys. Res. Commun. 323, 310–314 (2004).

    Article  CAS  Google Scholar 

  12. Shimizu, S., Ide, T., Yanagida, T. & Tsujimoto, Y. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J. Biol. Chem. 275, 12321–12325 (2000).

    Article  CAS  Google Scholar 

  13. Sugiyama, T., Shimizu, S., Matsuoka, Y., Yoneda, Y. & Tsujimoto, Y. Activation of mitochondrial voltage-dependent anion channel by a pro-apoptotic BH3-only protein Bim. Oncogene 21, 4944–4956 (2002).

    Article  CAS  Google Scholar 

  14. Shimizu, S., Narita, M. & Tsujimoto, Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483–487 (1999).

    Article  CAS  Google Scholar 

  15. Petronilli, V. et al. Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys. J. 76, 725–734 (1999).

    Article  CAS  Google Scholar 

  16. Baines, C. P. et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658–662 (2005).

    Article  CAS  Google Scholar 

  17. Bernardi, P. et al. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS. J. 273, 2077–2099 (2006).

    Article  CAS  Google Scholar 

  18. Halestrap, A. P., McStay, G. P. & Clarke, S. J. The permeability transition pore complex: another view. Biochimie 84, 153–166 (2002).

    Article  CAS  Google Scholar 

  19. Nakagawa, T. et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434, 652–658 (2005).

    Article  CAS  Google Scholar 

  20. Basso, E. et al. Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J. Biol. Chem. 280, 18558–18561 (2005).

    Article  CAS  Google Scholar 

  21. Schinzel, A. C. et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl Acad. Sci. USA 102, 12005–12010 (2005).

    Article  CAS  Google Scholar 

  22. Kokoszka, J. E. et al. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427, 461–465 (2004).

    Article  CAS  Google Scholar 

  23. Crompton, M., Virji, S. & Ward, J. M. Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur. J. Biochem. 258, 729–735 (1998).

    Article  CAS  Google Scholar 

  24. Woodfield, K., Ruck, A., Brdiczka, D. & Halestrap, A. P. Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem. J. 336, 287–290 (1998).

    Article  CAS  Google Scholar 

  25. Vander Heiden, M. G., et al. Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc. Natl Acad. Sci. USA 97, 4666–4671 (2000).

    Article  CAS  Google Scholar 

  26. Vander Heiden, M. G. et al. Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. J. Biol. Chem. 276, 19414–19419 (2001).

    Article  CAS  Google Scholar 

  27. Lai, J. C. et al. A pharmacologic target of G3139 in melanoma cells may be the mitochondrial VDAC. Proc. Natl Acad. Sci. USA 103, 7494–7499 (2006).

    Article  CAS  Google Scholar 

  28. Priault, M., Chaudhuri, B., Clow, A., Camougrand, N. & Manon, S. Investigation of bax-induced release of cytochrome c from yeast mitochondria permeability of mitochondrial membranes, role of VDAC and ATP requirement. Eur. J. Biochem. 260, 684–691 (1999).

    Article  CAS  Google Scholar 

  29. Polcic, P. & Forte, M. Response of yeast to the regulated expression of proteins in the Bcl-2 family. Biochem. J. 374, 393–402 (2003).

    Article  CAS  Google Scholar 

  30. Rostovtseva, T. K. et al. Bid, but not Bax, regulates VDAC channels. J. Biol. Chem. 279, 13575–13583 (2004).

    Article  CAS  Google Scholar 

  31. Antonsson, B., Montessuit, S., Lauper, S., Eskes, R. & Martinou, J. C. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem. J. 345, 271–278 (2000).

    Article  CAS  Google Scholar 

  32. Kagawa, S., et al. A binary adenoviral vector system for expressing high levels of the proapoptotic gene bax. Gene Ther. 7, 75–79 (2000).

    Article  CAS  Google Scholar 

  33. Kaiser, R. A., et al. Targeted inhibition of p38 mitogen-activated protein kinase antagonizes cardiac injury and cell death following ischemia-reperfusion in vivo. J. Biol. Chem. 279, 15524–15530 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to B. Fang for the generous gift of the Bax adenovirus, R. Gottlieb for recombinant Bax and tBid, and the late S. Korsmeyer for Bax–Bak gene-targeted mice. This work was supported by grants from the National Institutes of Health (J.D.M. and W.J.C.), an American Heart Association Scientist Development Grant (C.P.B.) and Established Investigator Grant (J.D.M.), a National Institutes of Health NRSA award (R.A.K.), The Children's Hospital Research Foundation (C.P.B.), and the Fondation Leducq (Heart failure network grant to J.D.M).

Author information

Authors and Affiliations

Authors

Contributions

C.P.B. and J.D.M. conceived the research project, C.P.B. performed all experimentation except the ischaemia–reperfusion experiment, which was performed by R.A.K. T.S. and W.J.C. provided critical reagents and valuable discussion.

Corresponding author

Correspondence to Jeffery D. Molkentin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4 and S5 (PDF 663 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baines, C., Kaiser, R., Sheiko, T. et al. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9, 550–555 (2007). https://doi.org/10.1038/ncb1575

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1575

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing