Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Functional proteomic screens reveal an essential extracellular role for hsp90α in cancer cell invasiveness

Abstract

Tumour cell invasiveness is crucial for cancer metastasis and is not yet understood. Here we describe two functional screens for proteins required for the invasion of fibrosarcoma cells that identified the molecular chaperone heat shock protein 90 (hsp90). The hsp90α isoform, but not hsp90β, is expressed extracellularly where it interacts with the matrix metalloproteinase 2 (MMP2). Inhibition of extracellular hsp90α decreases both MMP2 activity and invasiveness. This role for extracellular hsp90α in MMP2 activation indicates that cell-impermeant anti-hsp90 drugs might decrease invasiveness without the concerns inherent in inhibiting intracellular hsp90.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of HT-1080 cell surface binders.
Figure 2: FALI screening of HT-1080 cell surface binders.
Figure 3: Hsp90α is an extracellular protein on HT-1080 cells and in conditioned medium.
Figure 4: FALI with anti-hsp90 antibodies and pharmacological agents inhibit invasion.
Figure 5: Hsp90α interacts with and mediates MMP2 activity extracellularly.
Figure 6: Extracellular inhibition of hsp90α decreases invasion and active MMP2 protein.

References

  1. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  2. Clark, E.A., Golub, T.R., Lander, E.S. & Hynes, R.O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532–535 (2000).

    Article  CAS  Google Scholar 

  3. Ramaswamy, S., Ross, K.N., Lander, E.S. & Golub, T.R. A molecular signature of metastasis in primary solid tumors. Nature Genet. 33, 49–54 (2003).

    Article  CAS  Google Scholar 

  4. Bittner, M. et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406, 536–540 (2000).

    Article  CAS  Google Scholar 

  5. Perou, C.M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  Google Scholar 

  6. MacDonald, T.J. et al. Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nature Genet. 29, 143–152 (2001).

    Article  CAS  Google Scholar 

  7. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).

    Article  CAS  Google Scholar 

  8. Aza-Blanc, P. et al. Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol. Cell 12, 627–637 (2003).

    Article  CAS  Google Scholar 

  9. Beck, S. et al. Fluorophore-assisted light inactivation: A high-throughput tool for direct target validation of proteins. Proteomics 2, 247–255 (2002).

    Article  CAS  Google Scholar 

  10. Hoogenboom, H.R. et al. Antibody phage display technology and its applications. Immunotechnology 4, 1–20 (1998).

    Article  CAS  Google Scholar 

  11. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988).

    Google Scholar 

  12. Kinter, M. & Sherman, N.E. Protein Sequencing and Identification using Tandem Mass Spectrometry (Wiley-Interscience, New York, 2000).

    Book  Google Scholar 

  13. Rust, W.L., Carper, S.W. & Plopper, G.E. The promise of integrins as effective targets for anticancer agents. J. Biomed. Biotechnol. 2, 124–130 (2002).

    Article  CAS  Google Scholar 

  14. Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z. & Nardai, G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol. Ther. 79, 129–168 (1998).

    Article  CAS  Google Scholar 

  15. Richter, K. & Buchner, J. Hsp90: chaperoning signal transduction. J. Cell. Physiol. 188, 281–290 (2001).

    Article  CAS  Google Scholar 

  16. Hanwell, D., Ishikawa, T., Saleki, R. & Rotin, D. Trafficking and cell surface stability of the epithelial Na+ channel expressed in epithelial Madin–Darby canine kidney cells. J. Biol. Chem. 277, 9772–9779 (2002).

    Article  CAS  Google Scholar 

  17. Honda, K. et al. Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J. Cell Biol. 140, 1383–1393 (1998).

    Article  CAS  Google Scholar 

  18. Liao, D.F. et al. Purification and identification of secreted oxidative stress-induced factors from vascular smooth muscle cells. J. Biol. Chem. 275, 189–196 (2000).

    Article  CAS  Google Scholar 

  19. Schafer, T. et al. Unconventional secretion of fibroblast growth factor 2 is mediated by direct translocation across the plasma membrane of mammalian cells. J. Biol. Chem. 279, 6244–6251 (2004).

    Article  Google Scholar 

  20. Wubbolts, R.W. et al. Proteomic and biochemical analyses of human B cell-derived exosomes: potential implications for their function and multivesicular body formation. J. Biol. Chem. 278, 10963–10972 (2003).

    Article  CAS  Google Scholar 

  21. Thery, C. et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J. Immunol. 166, 7309–7318 (2001).

    Article  CAS  Google Scholar 

  22. Albertini, S. et al. Genotoxicity of 17 gyrase- and four mammalian topoisomerase II-poisons in prokaryotic and eukaryotic test systems. Mutagenesis 10, 343–351 (1995).

    Article  CAS  Google Scholar 

  23. Young, J.C., Moarefi, I. & Hartl, F.U. Hsp90: a specialized but essential protein-folding tool. J. Cell Biol. 154, 267–273 (2001).

    Article  CAS  Google Scholar 

  24. Xu, Y. & Lindquist, S. Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc. Natl Acad. Sci. USA 90, 7074–7078 (1993).

    Article  CAS  Google Scholar 

  25. Xu, Y., Singer, M.A. & Lindquist, S. Maturation of the tyrosine kinase c-src as a kinase and as a substrate depends on the molecular chaperone Hsp90. Proc. Natl Acad. Sci. USA 96, 109–114 (1999).

    Article  CAS  Google Scholar 

  26. Pratt, W.B. The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. J. Biol. Chem. 268, 21455–21458 (1993).

    CAS  PubMed  Google Scholar 

  27. Ferrarini, M., Heltai, S., Zocchi, M.R. & Rugarli, C. Unusual expression and localization of heat-shock proteins in human tumor cells. Int. J. Cancer 51, 613–619 (1992).

    Article  CAS  Google Scholar 

  28. Triantafilou, K., Triantafilou, M. & Dedrick, R.L. A CD14-independent LPS receptor cluster. Nature Immunol. 2, 338–345 (2001).

    Article  CAS  Google Scholar 

  29. Liotta, L.A. et al. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284, 67–68 (1980).

    Article  CAS  Google Scholar 

  30. Lopez-Otin, C. & Overall, C.M. Protease degradomics: a new challenge for proteomics. Nature Rev. Mol. Cell Biol. 3, 509–519 (2002).

    Article  CAS  Google Scholar 

  31. Lehti, K., Lohi, J., Valtanen, H. & Keski-Oja, J. Proteolytic processing of membrane-type-1 matrix metalloproteinase is associated with gelatinase A activation at the cell surface. Biochem. J. 334, 345–353 (1998).

    Article  CAS  Google Scholar 

  32. Sternlicht, M.D. & Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell. Dev. Biol. 17, 463–516 (2001).

    Article  CAS  Google Scholar 

  33. Pearl, L.H. & Prodromou, C. Structure and in vivo function of Hsp90. Curr. Opin. Struct. Biol. 10, 46–51 (2000).

    Article  CAS  Google Scholar 

  34. Whitesell, L., Mimnaugh, E.G., De Costa, B., Myers, C.E. & Neckers, L.M. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc. Natl Acad. Sci. USA 91, 8324–8328 (1994).

    Article  CAS  Google Scholar 

  35. Basso, A.D. et al. Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J. Biol. Chem. 277, 39858–39866 (2002).

    Article  CAS  Google Scholar 

  36. Schulte, T.W., Blagosklonny, M.V., Ingui, C. & Neckers, L. Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J. Biol. Chem. 270, 24585–24588 (1995).

    Article  CAS  Google Scholar 

  37. Neckers, L. & Ivy, S.P. Heat shock protein 90. Curr. Opin. Oncol. 15, 419–424 (2003).

    Article  CAS  Google Scholar 

  38. Yufu, Y., Nishimura, J. & Nawata, H. High constitutive expression of heat shock protein 90 alpha in human acute leukemia cells. Leuk. Res. 16, 597–605 (1992).

    Article  CAS  Google Scholar 

  39. Lebeau, J., Le Chalony, C., Prosperi, M.T. & Goubin, G. Constitutive overexpression of a 89 kDa heat shock protein gene in the HBL100 human mammary cell line converted to a tumorigenic phenotype by the EJ/T24 Harvey-ras oncogene. Oncogene 6, 1125–1132 (1991).

    CAS  PubMed  Google Scholar 

  40. Gress, T.M. et al. Differential expression of heat shock proteins in pancreatic carcinoma. Cancer Res. 54, 547–551 (1994).

    CAS  Google Scholar 

  41. Kamal, A. et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425, 407–410 (2003).

    Article  CAS  Google Scholar 

  42. Traut, T.W. Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem. 140, 1–22 (1994).

    Article  CAS  Google Scholar 

  43. Basu, S., Binder, R.J., Ramalingam, T. & Srivastava, P.K. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14, 303–313 (2001).

    Article  CAS  Google Scholar 

  44. Overall, C.M. & Lopez-Otin, C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nature Rev. Cancer 2, 657–672 (2002).

    Article  CAS  Google Scholar 

  45. Harlow, E. & Lane, D. Using Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1999).

    Google Scholar 

Download references

Acknowledgements

We thank M. Berne for performing the mass spectrometry analysis on 1.5.1 immunoprecipitates, and J. Dice, J. Kerner and K. Sloan for critical reading of the manuscript. This work was supported in part by grants from the National Cancer Institute (to D.G.J.), a National Institutes of Health Training grant (B.K.E.) and a National Institutes of Health Program grant to the Gastroenterology Research on Absorptive and Secretory Processes group (GRASP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel G. Jay.

Ethics declarations

Competing interests

C.U., C.Z., B. L., C.T., S.W.H., G.B., L.L.I. and D.G.J. received funding (research support and salaries) from Xerion Pharmaceuticals.

Supplementary information

Supplementary Figures

Supplementary Fig. S1, S2 and S3 (PDF 341 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eustace, B., Sakurai, T., Stewart, J. et al. Functional proteomic screens reveal an essential extracellular role for hsp90α in cancer cell invasiveness. Nat Cell Biol 6, 507–514 (2004). https://doi.org/10.1038/ncb1131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing