Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Forming the cell rear first: breaking cell symmetry to trigger directed cell migration

Subjects

Abstract

Directed cell migration requires the breaking of cell symmetry to generate a cell front and a cell rear along an axis approximately aligned with the direction of locomotion. In most cell types, regulated actin polymerization promotes initial cell front formation and its subsequent persistent protrusion, whereas myosin II-based forces are required to initially create and then maintain the cell rear. Molecular models for cell migration have focused extensively on cell protrusion, and the breaking of cell symmetry is almost universally portrayed with the cell front forming first. Although data supports this model for cells moving towards chemo-attractants, in the absence of any guidance cue, cell symmetry is broken by the cells constitutively forming the cell rear first. This allows an alternative model for triggering cell migration starting with retraction at the back of the cell. In this model, actomyosin II activity within the cell body and prospective cell rear occurs before a spatial bias in actin polymerization at the cell front. Creating the cell rear first may be a useful tool employed by a wide-range of migrating cell types, particularly when moving away from repellent cues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The initiation of cell polarization from the cell rear versus the cell front.

Similar content being viewed by others

References

  1. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Mitchison, T. J. & Cramer, L. P. Actin-based cell motility and cell locomotion. Cell 84, 371–379 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Sheetz, M. P., Felsenfeld, D., Galbraith, C. G. & Choquet, D. Cell migration as a five-step cycle. Biochem. Soc. Symp. 65, 233–243 (1999).

    CAS  PubMed  Google Scholar 

  4. Ridley, A. J. Rho GTPases and cell migration. J. Cell Sci. 114, 2713–2722 (2001).

    CAS  PubMed  Google Scholar 

  5. Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Zigmond, S. H. & Sullivan, S. J. Sensory adaptation of leukocytes to chemotactic peptides. J. Cell Biol. 82, 517–527 (1979).

    Article  CAS  PubMed  Google Scholar 

  7. Wong, K., Pertz, O., Hahn, K. & Bourne, H. Neutrophil polarization: spatiotemporal dynamics of RhoA activity support a self-organizing mechanism. Proc. Natl Acad. Sci. USA 103, 3639–3644 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mseka, T., Bamburg, J. R. & Cramer, L. P. ADF/cofilin family proteins control formation of oriented actin-filament bundles in the cell body to trigger fibroblast polarization. J. Cell Sci. 120, 4332–4344 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Yam, P. T. et al. Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J. Cell Biol. 178, 1207–1221 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, W. Surface changes during retraction-induced spreading of fibroblasts. J. Cell Sci. 49, 1–13 (1981).

    CAS  PubMed  Google Scholar 

  11. Dunn, G. A. Mechanisms of fibroblast locomotion, in Cell Adhesion and Motility, 3rd BSCB Symposium (eds Curtis, A. S. G. & Pitts, J. D.) 409–423 (Cambridge Univ. Press, 1980).

    Google Scholar 

  12. Dunn, G. A. & Zicha, D. Dynamics of fibroblast spreading. J. Cell Sci. 108, 1239–1249 (1995).

    CAS  PubMed  Google Scholar 

  13. Verkhovsky, A. B., Svitkina, T. M. & Borisy, G. G. Self-polarization and directional motility of cytoplasm. Curr. Biol. 9, 11–20 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Mast, S. O. Structure, movement, locomotion, and stimulation in amoeba. J. Morph. Physiol. 41, 347–425 (1926).

    Article  Google Scholar 

  15. Allen, R. D. & Taylor, D. L. The molecular basis of amoeboid movement, in Molecules and Cell Movement (eds. Inoue, S. & Stephens, R. E.) 239–258 (Raven, New York, 1975).

    Google Scholar 

  16. Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114, 201–214 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Carlier, M. F. & Pantaloni, D. Control of actin assembly dynamics in cell motility. J. Biol. Chem. 282, 23005–23009 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Charras, G. & Paluch, E. Blebs lead the way: how to migrate without lamellipodia. Nat. Rev. Mol. Cell Biol. 9, 730–736 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Niggli, V. Signaling to migration in neutrophils: importance of localised pathways. Intl. J. Biochem. Cell Biol. 35, 1619–1638 (2003).

    Article  CAS  Google Scholar 

  21. Koehl, G. & McNally, J. G. Myosin II redistribution during rear retraction and the role of filament assembly and disassembly. Cell Biol. Internatl 26, 287–396 (2002).

    Article  CAS  Google Scholar 

  22. Vicente-Manzanares, M. et al. Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells. J. Cell Biol. 176, 573–580 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gutjahr, M. C., Rossy, J. & Niggli, V. Role of Rho, Rac, and Rho kinase in phosphorylation of myosin light chain, development of polarity, and spontaneous migration of Walker 256 carcinosarcoma cells. Exp. Cell Res. 308, 422–438 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Vicente-Manzanares, M. et al. Segregation and activation of myosin IIB creates a rear in migrating cells. J. Cell Biol. 183, 543–554 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shutova, M. S., Alexandrova, A. Y. & Vasiliev, J., M. Regulation of polarity in cells devoid of actin bundle system after treatment with inhibitors of myosin II activity. Cell Motil. Cytoskeleton 65, 734–746 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Lo, C.-M. et al. Nonmuscle Myosin IIB is involved in the guidance of fibroblast migration. Mol. Biol. Cell 15, 982–989 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bardi, G., Niggli, V. & Loetscher, P. Rho kinase is required for CCR7-mediated polarization and chemotaxis of T lymphocytes. FEBS Letts. 542, 79–83 (2003).

    Article  CAS  Google Scholar 

  28. Cramer, L. P., Siebert, M. & Mitchison, T. J. Identification of novel graded polarity actin filament bundles in locomoting heart fibroblasts: implications for the generation of motile force. J. Cell Biol. 136, 1287–1305 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Swailes, N. T., Knight, P. J. & Peckham, M. Actin filament organization in aligned prefusion myoblasts. J. Anat. 205, 381–391 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Svitkina, T. M., Verkhovsky, A. B., McQuade, K. M. & Borisy, G. G. Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J. Cell Biol. 139, 397–415 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gardel, M. L. et al. Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J. Cell Biol. 183, 999–1005 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mseka, T., Coughlin, M. & Cramer, L. P. Graded actin filament polarity is the organization of oriented actomyosin II filament bundles required for fibroblast polarization. Cell Motil. Cytoskel. 66, 743–753 (2009).

    Article  CAS  Google Scholar 

  33. Gomes, E. R., Jani, S. & Gundersen, G. G. Nuclear movement regulated by Cdc42, MRCK, myosin and actin flow establishes MTOC polarization in migrating cells. Cell 121, 451–463 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Zicha, D. et al. Rapid actin transport during cell protrusion. Science 300, 142–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Iwasaki, T. & Wang, Y.-L. Cytoplasmic force gradient in migrating adhesive cells. Biophys. J. 94, L35–L37 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Keren, K. et al. Intracellular fluid flow in rapidly moving cells. Nat. Cell Biol. 11, 1219–1225 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cramer, L. P. Role of actin-filament disassembly in lamellipodium protrusion in motile cells revealed using the drug jasplakinolide. Curr. Biol. 9, 1095–1105 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Peckham, M. et al. Specific changes to the mechanism of cell locomotion induced by overexpression of β-actin. J. Cell Sci. 114, 1367–1377 (2001).

    CAS  PubMed  Google Scholar 

  39. Blankenship, J. T. et al. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell 11, 459–470 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank V. Niggli for helpful discussion and G. Charras, F. Pichaud and T. Mseka for helpful comments on the manuscript, and acknowledge colleagues whose studies were not directly cited because of space restraints.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Table 1 (PDF 176 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cramer, L. Forming the cell rear first: breaking cell symmetry to trigger directed cell migration. Nat Cell Biol 12, 628–632 (2010). https://doi.org/10.1038/ncb0710-628

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0710-628

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing