Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression

Abstract

We have developed a genetics-based phytoremediation strategy for arsenic in which the oxyanion arsenate is transported aboveground, reduced to arsenite, and sequestered in thiol–peptide complexes. The Escherichia coli arsC gene encodes arsenate reductase (ArsC), which catalyzes the glutathione (GSH)-coupled electrochemical reduction of arsenate to the more toxic arsenite. Arabidopsis thaliana plants transformed with the arsC gene expressed from a light-induced soybean rubisco promoter (SRS1p) strongly express ArsC protein in leaves, but not roots, and were consequently hypersensitive to arsenate. Arabidopsis plants expressing the E. coli gene encoding γ-glutamylcysteine synthetase (γ-ECS) from a strong constitutive actin promoter (ACT2p) were moderately tolerant to arsenic compared with wild type. However, plants expressing SRS1p/ArsC and ACT2p/γ-ECS together showed substantially greater arsenic tolerance than γ-ECS or wild-type plants. When grown on arsenic, these plants accumulated 4- to 17-fold greater fresh shoot weight and accumulated 2- to 3-fold more arsenic per gram of tissue than wild type or plants expressing γ-ECS or ArsC alone. This arsenic remediation strategy should be applicable to a wide variety of plant species.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ArsC- and γ-ECS-catalyzed reactions.
Figure 2: Immunodetection of ArsC and γ-ECS proteins in transgenic plants.
Figure 3: Arsenic-sensitive phenotype of ArsC-expressing Arabidopsis.
Figure 4: Relative growth inhibition and arsenic speciation of ArsC-overexpressing plants.
Figure 5: Arsenic resistance of plants expressing ArsC9 and γ-ECS.
Figure 6: Growth inhibition and arsenic accumulation of wild-type and transgenic Arabidopsis.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Nriagu, E. (ed.) Arsenic in the Environment, Part I: Cycling and Characterization (Wiley, New York, 1994).

    Google Scholar 

  2. Kaiser, J. Toxicologists shed new light on old poisons. Science 279, 1850–1851 (1998).

    Article  CAS  Google Scholar 

  3. Chen, C.J., Chen, C.W., Wu, M.M. & Kuo, T.L. Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br. J. Cancer 66, 888–892 (1992).

    Article  CAS  Google Scholar 

  4. Meagher, R.B. & Rugh, C.L. Phytoremediation of heavy metal pollution: ionic and methyl mercury. Biotechnology for Water Use and Conservation: The Mexico '97 Workshop 306–321 (OECD Publications, Paris, 1997).

    Google Scholar 

  5. Meagher, R.B. Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. Plant Biol. 3, 153–162 (2000).

    Article  CAS  Google Scholar 

  6. Ma, L.Q. et al. A fern that hyperaccumulates arsenic. Nature 409, 579 (2001).

    Article  CAS  Google Scholar 

  7. Meharg, A.A. & Macnair, M.R. Genetic correlation between arsenate tolerance and the rate of influx of arsenate and phosphate in Holcus lanatus. Heredity 69, 336–341 (1992).

    Article  CAS  Google Scholar 

  8. Meharg, A.A. & Macnair, M.R. An altered phosphate uptake system in arsenate-tolerant Holcus lanatus L. New Phytol. 116, 29–35 (1990).

    Article  CAS  Google Scholar 

  9. Pickering, I.J. et al. Reduction and coordination of arsenic in Indian mustard. Plant Physiol. 122, 1171–1177 (2000).

    Article  CAS  Google Scholar 

  10. Cobbett, C.S. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 123, 825–832 (2000).

    Article  CAS  Google Scholar 

  11. Gladysheva, T., Oden, K.L. & Rosen, B.P. Properties of the arsenate reductase of plasmid R773. Biochemistry 33, 7288–7293 (1994).

    Article  CAS  Google Scholar 

  12. Mukhopadhyay, R., Shi, J. & Rosen, B.P. Purification and characterization of ACR2p, the Saccharomyces cerevisiae arsenate reductase. J. Biol. Chem. 275, 21149–21157 (2000).

    Article  CAS  Google Scholar 

  13. Shirley, B.W. & Meagher, R.B. A potential role for RNA turnover in the light regulation of plant gene expression: ribulose-1,5-bisphosphate carboxylase small subunit in soybean. Nucleic Acids Res. 18, 3377–3385 (1990).

    Article  CAS  Google Scholar 

  14. Tsutsumi, M. Comparative toxicity of arsenite and arsenate to rice seedlings under various levels of phosphate supply. Soil Sci. Plant Nutr. 29, 63–69 (1983).

    Article  CAS  Google Scholar 

  15. Grondin, K., Haimeur, A., Mukhopadhyay, R., Rosen, B.P. & Ouellette, M. Co-amplification of the γ-glutamylcysteine synthetase gene gsh1 and of the ABC transporter gene pgpA in arsenite-resistant Leishmania tarentolae. EMBO J. 16, 3057–3065 (1997).

    Article  CAS  Google Scholar 

  16. Arisi, A.C., Noctor, G., Foyer, C.H. & Jouanin, L. Modification of thiol contents in poplars (Populus tremula × P. alba) overexpressing enzymes involved in glutathione synthesis. Planta 203, 362–372 (1997).

    Article  CAS  Google Scholar 

  17. Zhu, Y.L. et al. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol. 121, 1169–1177 (1999).

    Article  CAS  Google Scholar 

  18. Hell, R. & Bergmann, L. γ-Glutamylcysteine synthetase in higher plants: catalytic properties and localization. Planta 180, 603–612 (1990).

    Article  CAS  Google Scholar 

  19. An, Y.-Q. et al. Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues. Plant J. 10, 107–121 (1996).

    Article  CAS  Google Scholar 

  20. Szczypka, M.S., Wemmie, J.A., Moye-Rowley, W.S. & Thiele, D.J. A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein. J. Biol. Chem. 269, 22853–22857 (1994).

    CAS  Google Scholar 

  21. Li, Z.S., Szczypka, M., Lu, Y.P., Thiele, D.J. & Rea, P.A. The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J. Biol. Chem. 271, 6509–6517 (1996).

    Article  CAS  Google Scholar 

  22. Ghosh, M., Shen, J. & Rosen, B.P. Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 96, 5001–5006 (1999).

    Article  CAS  Google Scholar 

  23. Sanchez-Fernandez, R., Davies, T.G., Coleman, J.O. & Rea, P.A. The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J. Biol. Chem. 276, 30231–30244 (2001).

    Article  CAS  Google Scholar 

  24. Tommasini, R. et al. An ABC-transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity. Plant J. 13, 773–780 (1998).

    Article  CAS  Google Scholar 

  25. Kaiser, J. Second look at arsenic finds higher risk. Science 293, 2189 (2001).

  26. WHO. Guideline for Drinking Water Quality, Recommendation 2nd edn. Vol. 1, 41 (World Health Organization, Geneva, 1992).

  27. Tondel, M. et al. The relationship of arsenic levels in drinking water and the prevalence rate of skin lesions in Bangladesh. Environ. Health Perspect. 107, 727–729 (1999).

    Article  CAS  Google Scholar 

  28. Chen, C.-M., Misra, T.K., Silver, S. & Rosen, B.P. Nucleotide sequence of the structural genes for an anion pump. J. Biol. Chem. 261, 15030–15038 (1986).

    CAS  PubMed  Google Scholar 

  29. Liu, J., Gladysheva, T.B., Lee, G.L. & Rosen, B.P. Identification of an essential cysteinyl residue in the ArsC arsenate reductase of plasmid R773. Biochemistry 34, 13472–13476 (1995).

    Article  CAS  Google Scholar 

  30. Bevan, M.W. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 12, 8711–8721 (1984).

    Article  CAS  Google Scholar 

  31. Li, Y., Kandasamy, M.K. & Meagher, R.B. Rapid isolation of monoclonal antibodies: monitoring enzymes in the phytochelatin synthesis pathway. Plant Physiol. 127, 711–719 (2001).

    Article  CAS  Google Scholar 

  32. Bent, A. et al. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of disease resistance genes. Science 265, 1856–1860 (1994).

    Article  CAS  Google Scholar 

  33. Jones, J.J. & Case, V.V. Sampling, handling, and analyzing plant tissue samples. in Soil Testing and Plant Analysis 2nd edn. SSSA book series, No. 3 (ed. Westerman, R.) 389–427 (Soil Science Society of America, Madison, WI, 1990).

    Google Scholar 

  34. Bizily, S., Rugh, C.L. & Meagher, R.B. Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat. Biotechnol. 18, 213–217 (2000).

    Article  CAS  Google Scholar 

  35. Rosen, B.P., Weigel, U., Monticello, R.A. & Edwards, B.P.F. Molecular characterization of an anion pump: purification of the ArsC protein. Arch. Biochem. Biophys. 284, 381–385 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ingrid J. Pickering and Roger C. Prince for their help in collecting and analyzing the XAS data at SSRL and Gay Gragson, Rebecca S. Balish, and M.K. Kandasamy for editorial comments. This research was supported by US Department of Energy (DOE) grant DE-FC09-93R18262, DOE Environmental Science Management Program grant DE-FG07-96ER20257 and NIH grant RO1 GM52216.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Meagher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhankher, O., Li, Y., Rosen, B. et al. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat Biotechnol 20, 1140–1145 (2002). https://doi.org/10.1038/nbt747

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt747

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing