Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Generation of Rhizobium strains with improved symbiotic properties by random DNA amplification (RDA)

Abstract

To select for bacterial strains with enhanced phenotypes, random fragments of a whole genome, or a defined region of the genome, are cloned in a nonreplicating vector. The resulting plasmids are integrated by recombination into the homologous DNA region of the original strain. Integration gives rise to a nontandem direct duplication of the corresponding DNA region separated by the vector moiety of the plasrtiid. Recombination between the direct repeats leads to tandem duplication and further amplification Of the entire integrated DNA, including the vector. Bacteria harboring the amplified DNA are selected by increasing the dosage of an antibiotic corresponding to a resistance marker of the integrated vector. Pooled strains carrying amplifications are then challenged with a selective pressure for the desired phenotype. After repeated selection cycles, the most fit strains are isolated. We used this process, which we called random DNA amplification, to select Rhizobium strains with increased competitiveness for nodule formation. Derivatives containing randomly amplified DNA regions of the symbiotic plasmid of Rhizobium tropici CFN299 strain were generated. Pools of amplified strains were inoculated onto various tropical legumes. After several cycles of selection through plants, amplified derivatives showing an increased competitiveness for nodule formation with the leguminous plant Macroptilium atropurpureum were obtained.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Anderson, P.P. and Roth, J.R. 1997. Tandem genetic duplications in phage and bacteria. Annu. Rev. Microbiol. 31: 473–505.

    Article  Google Scholar 

  2. Petes, T.D. and Hill, C.W. 1988. Recombination between repeated genes in microorganisms. Annu. Rev. Microbiol. 22: 147–168.

    CAS  Google Scholar 

  3. Neuberger, M.S. and Hartley, B.S. 1981. Structure of an experimentally evolved gene duplication encoding ribitol dehydrogenase in a mutant of Klebsiella aerogenes. J. Gen. Microbiol. 122: 181–191.

    CAS  PubMed  Google Scholar 

  4. Sonti, R.V. and Roth, J.R. 1989. Role of gene duplications in the adaptation of Salmonella typhimuriurti to growth on limiting carbon sources. Genetics 12319–28.

    Google Scholar 

  5. Ghosal, D., You, I.-S., Chatterjee, O.K. and Chakrabarty, A.M. 1985. Genes specifying degradation of 3-chlorobenzoic acid in plasmids pAC27 and pJP4. Proc. Natl. Acad. Sci. USA 82: 1638–1642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mekalanos, J.J. 1983. Duplication and amplification of toxin genes in Vibrio cholerae . Cell 35: 253–263.

    Article  CAS  PubMed  Google Scholar 

  7. Corn, P.G., Anders, J., takala, A.K., Kayhty, H. and Hoiseth, S.K. 1993. Genes involved in Haemojphilus influenzae type b capsule expression are fre-quently amplified. J. Infect. Dis. 167: 356–364.

    Article  CAS  PubMed  Google Scholar 

  8. Peterson, B.C. and Rownd, R.H. 1985. Drug resistance gene amplification of plasmid NR1 derivatives with various amounts of resistance determinant DNA. J. Bacteriol. 161: 1042–1048.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Flores, M., Brom, S., Stefjkowski, T., Girard, M.L., Davila, G., Romero, D. et al. 1993. Gene amplification in Rhizobium: Identification and in vivo cloning of discrete amplifiable DNA regions (amplicons) from Rhizobium leguminosarum biovar phaseoli. Proc. Nail. Acad. Sci, USA 90: 4932–4936.

    Article  CAS  Google Scholar 

  10. Roth, J.R., Benson, N., Gblitski, T., Haack, K., Lawrence, J.G. and Miesel, L. 1996. Rearrangements of the bacterial chromosome: formation and applications, pp. 2256–2276 in: Escherichia coli and Salmonella typhimurium: cellular and molecular biology, 2nd. ed. Neidhardt, F.C., Curtiss III, R., Ingrham, J.L., Lin, E.C.C., Low Jr., K., Magasanik, B., et al. (eds.) American Society for Microbiology Press, Washington, DC.

    Google Scholar 

  11. Albertini, A.M. and Galizzl, A. 1985. Amplification of a chromosomal region in Bacillus subtilis J. Bacteriol. 162: 1203–1211.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kallio, P., Palva, A. and Palva, I. 1987. Enhancement of α-amylase production by integrating and amplifying the α-amylase gene of Bacillus amyloliquefaciens in the genome of Bacillus subtilis . Appl. Microbiol. Biotechnol. 27: 64–71.

    Article  CAS  Google Scholar 

  13. Fisher, R.F. and Long, S.R. 1992. Rhizobium-plant signal exchange. Nature 357: 655–660.

    Article  CAS  PubMed  Google Scholar 

  14. Denarie, J., Debbelle, F., and Rosenberg, C. 1992. Signaling and host range variation in nodulation. Annu. Rev. Microbiol. 46: 497–531.

    Article  CAS  PubMed  Google Scholar 

  15. Schultze, M., Kondorosi, E., Ratet, P., Buire, M. and Kondorosi, A. 1994. Cell and molecular biology of Rhizobium-plant interactions. Int. Rev. Cytol. 156174.

  16. Martinez-Romero, E. and Caballero-Mellado, J. 1996. Rhizobiumphylogenies and bacterial genetic diversity. Crit. Rev. Plant Sci. 15: 113–140.

    Article  CAS  Google Scholar 

  17. Honeycutt, R.J., McClelland, M. and Sobral, B.W.S. 1993. Physical map of the genome of Rhizobium meliloti1021. J. Bacteriol. 175: 6945–6952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Banfalvi, Z., Sakanyan, V., Koncz, C., Kiss, A., Dusha, I. and Kondorosi, A. 1981. Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid of Rhizobium meliloti . Mol. Gen. Genet. 184: 318–325.

    CAS  PubMed  Google Scholar 

  19. Rosenberg, C., Boistard, P., Denarie, J. and Casse-Delbart, F. 1981. Genes controlling early and late functions in symbiosis are located on a megaplas-mid in Rhizobium meliloti . Mol. Gen. Genet. 184: 326–333.

    CAS  PubMed  Google Scholar 

  20. Flores, M., Gonzalez, V., Brom, S., Martlnez, E., Pinero, D., Romero, D. et al. 1987. Reiterated DNA sequences in Rhizobium and Agrobacterium . J. Bacteriol. 169: 5782–5788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Flores, M., Gonzalez, V., Pardo, M.A., Leija, A., Martinez, E., Romero, D. et al. 1988. Genomic instability in Rhizobium phaseoli . J. Bacteriol. 170: 1191–1196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Romero, D., Brom, S., Martinez-Salazar, J., Girard, M.L., Palacios, R. and Davila, G. 1991. Amplification and deletion of a nod-nifregion in the symbi-otic plasmid of Rhizobium phaseoli . J. Bacteriol. 173: 2435–2441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Romero, D., Martinez-Salazar, J., Girard, L., Brom, S., G-, Palacios, R., et al 1995. Discrete amplifiable regions (amplicons) in the symbiotic plasmid of Rhizobium etliCFN42. J. Bacteriol. 177: 973–980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martinez-Romero, E., Segovia, L., Mercante, F.M., Franco, A.A., R, and Pardo, M.A 1991. Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int. J. Syst. Bacteriol. 41: 392–394.

    Article  Google Scholar 

  25. Martinez, E., Palacios, R. and Sanchez, F. 1987. Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plas-mids. J. Bacteriol. 169: 2828–2834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hernandez-Lucas, I., Segovia, L., Martinez-Romero, E. and Pueppke, S.G. 1995. Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L. Appl. Environ. Microbiol. 61: 2775–2779.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hollander, M. and Wolfe, D.A. 1973. Nonparametric statistical methods. John Wiley & Sons, Inc., New York.

    Google Scholar 

  28. Dowling, D.N. and Broughton, W.J. 1986. Competition for nodulation of legumes. Annu. Rev. Microbiol. 40: 131–157.

    Article  CAS  PubMed  Google Scholar 

  29. Triplet!, E.W. 1990. The molecular genetics of nodulation competitiveness in Rhizobium and Bradyrhizobium . Mol. Plant-Microbe Interact. 3: 199–206.

    Article  Google Scholar 

  30. Bromfield, E.S.P., Lewis, D.M. and Barran, L.R. 1985. Cryptic plasmid and rifampicin resistance in Rhizobium meliloti influencing nodulation competi-tiveness. J. Bacteriol. 164: 410–413.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sanjuan, J. and Olivares, J. 1991. Multicopy plasmids carrying the Klebsiella pneumoniae nifAgene enhance Rhizobium meliloti nodulation competitiveness on alfalfa. Mol. Plant-Microbe Interact.

  32. Seattle, G.A. and Handelsman, J. 1993. Evaluation of a strategy for identify-ing nodulation competitiveness genes in Rhizobium leguminosarum biovar phaseoli . J. Gen. Microbiol. 139: 529–538.

    Article  Google Scholar 

  33. van Rhijn, P.J.S., Feys, B., Verreth, C. and Vanderleyden, J. 1993. Multiple copies of nodD in Rhizobium tropici CIAT899 and BR816. J. Bacteriol. 175: 438–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vargas, C., Martinez, L.J., Megias, M. and Quinto, C. 1990. Identification and cloning of nodulation genes and host specificity determinants of the broad host range Rhizobium leguminosarum bv. phaseoli strain CIAT899. Mol. Microbiol. 4: 1899–1910.

    Article  CAS  PubMed  Google Scholar 

  35. F, Voets, T, Vlassak, K., Vanderleyden, J., and van Rhijn, P 1995. The nodS gene of Rhizobium tropicistrain CIAT899 is necessary for nodulation on Phaseolus vulgaris and on Leucaena leucocephala . Mol. Plant-Microbe Interact. 8: 147–154.

  36. Folch-Mallol, J.L., Marroqut, S., Sousa, C., Manyani, H., Lopez-Lara, I.M., van der Drift, K.M.G.M. 1996. Characterization of Rhizobium tropiciCIAT899 nodulation factors: the role of nodH and nodPQ genes in their sulfation. Mol. Plant-Microbe Interact. 9: 151–163.

    Article  CAS  PubMed  Google Scholar 

  37. Laeremans, T., Caluwaerts, I., Verreth, C., Rogel, M.A., Vanderleyden, J. and Martinez-Romero, E. 1996. Isolation and characterization of the Rhizobium tropici Nod factor sulfation genes. Mol. Plant-Microbe Interact. 9: 492–500.

    Article  CAS  PubMed  Google Scholar 

  38. Simon, R. and Priefer, U.S. 1990. Vector technology of relevance to nitrogen fixation research, pp. 13–49 in Molecular biology of symbiotic nitrogen fixa-tion. Gresshoff, P.M.P (ed). CRC Press, Boca Raton, FL.

    Google Scholar 

  39. Eckhardt, T. 1978. A rapid method for the identification of plasmid desoxyri-bonucleic acid in bacteria. Plasmid 1: 584–588.

    Article  CAS  PubMed  Google Scholar 

  40. Geniaux, E., Flores, M., Palacios, R. and Martinez, E. 1995. Presence of megaplasmids in Rhizobium tropici and further evidence of differences between the two R. tropici subtypes. Int. J. Syst. Bacteriol. 45: 417–426.

    Article  Google Scholar 

  41. Hirsch, P.R., Van Montagu, M., Johnston, A.W.B., Johnston, A.W.B. and Schell, J. 1980. Physical identification of bacteriocinogenic, nodulation and other plas-mids in strains of Rhizobium leguminosarum . J. Gen. Microbiol. 120: 403–412.

    Google Scholar 

  42. Simon, R., O'Connell, M., Labes, M. and Puhler, A. 1986. Plasmid vectors for the genetic analysis and manipulation of rhizobia and other Gram-negative bacteria. Methods Enzymol. 188: 640–659.

    Article  Google Scholar 

  43. Figurski, D.H. and Helinski, D.R. 1979. Replication of an origin-containing derivative of plasmid RK2 dependant on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76: 1648–1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fahraeus, G. 1957. The infection of clover root hairs by nodule bacteria studied by a single glass technique. J. Gen. Microbiol. 16: 374–381.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mavingui, P., Flores, M., Romero, D. et al. Generation of Rhizobium strains with improved symbiotic properties by random DNA amplification (RDA). Nat Biotechnol 15, 564–569 (1997). https://doi.org/10.1038/nbt0697-564

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0697-564

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing