Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy

Abstract

Optimal four-dimensional imaging requires high spatial resolution in all dimensions, high speed and minimal photobleaching and damage. We developed a dual-view, plane illumination microscope with improved spatiotemporal resolution by switching illumination and detection between two perpendicular objectives in an alternating duty cycle. Computationally fusing the resulting volumetric views provides an isotropic resolution of 330 nm. As the sample is stationary and only two views are required, we achieve an imaging speed of 200 images/s (i.e., 0.5 s for a 50-plane volume). Unlike spinning-disk confocal or Bessel beam methods, which illuminate the sample outside the focal plane, we maintain high spatiotemporal resolution over hundreds of volumes with negligible photobleaching. To illustrate the ability of our method to study biological systems that require high-speed volumetric visualization and/or low photobleaching, we describe microtubule tracking in live cells, nuclear imaging over 14 h during nematode embryogenesis and imaging of neural wiring during Caenorhabditis elegans brain development over 5 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dual-view iSPIM setup.
Figure 2: Improving resolution isotropy with different fusion schemes.
Figure 3: Bleaching comparison between SDCM and diSPIM.
Figure 4: Dual-view iSPIM enables microtubule tracking in 4D.
Figure 5: Dual-view iSPIM improves axial resolution in 4D embryonic imaging.
Figure 6: Spatiotemporal dissection of AIY neurite outgrowth.

Similar content being viewed by others

References

  1. Voie, A.H., Burns, D.H. & Spelman, F.A. Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J. Microsc. 170, 229–236 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Fuchs, E., Jaffe, J.S., Long, R.A. & Azam, F. Thin laser light sheet microscope for microbial oceanography. Opt. Express 10, 145–154 (2002).

    Article  PubMed  Google Scholar 

  3. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E.H.K. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Holekamp, T.F., Turaga, D. & Holy, T.E. Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron 57, 661–672 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Huisken, J. & Stainier, D.Y. Selective plane illumination microscopy techniques in developmental biology. Development 136, 1963–1975 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu, Y. et al. Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 108, 17708–17713 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Capoulade, J., Wachsmuth, M., Hufnagel, L. & Knop, M. Quantitative fluorescence imaging of protein diffusion and interaction in living cells. Nat. Biotechnol. 29, 835–839 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Fahrbach, F.O., Simon, P. & Rohrbach, A. Microscopy with self-reconstructing beams. Nat. Photonics 4, 780–785 (2010).

    Article  CAS  Google Scholar 

  9. Planchon, T.A. et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8, 417–423 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Swoger, J., Verveer, P., Greger, K., Huisken, J. & Stelzer, E.H.K. Multi-view image fusion improves resolution in three-dimensional microscopy. Opt. Express 15, 8029–8042 (2007).

    Article  PubMed  Google Scholar 

  11. Temerinac-Ott, M. et al. Multiview deblurring for 3-D images from light-sheet-based fluorescence microscopy. IEEE Trans. Image Process. 21, 1863–1873 (2012).

    Article  PubMed  Google Scholar 

  12. Verveer, P.J. et al. High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy. Nat. Methods 4, 311–313 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Tomer, R., Khairy, K., Amat, F. & Keller, P.J. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat. Methods 9, 755–763 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Krzic, U., Gunther, S., Saunders, T.E., Streichan, S.J. & Hufnagel, L. Multiview light-sheet microscope for rapid in toto imaging. Nat. Methods 9, 730–733 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Swoger, J., Huisken, J. & Stelzer, E.H.K. Multiple imaging axis microscopy improves resolution for thick-sample applications. Opt. Lett. 28, 1654–1656 (2003).

    Article  PubMed  Google Scholar 

  16. Schmid, B. et al. High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics. Nat. Commun. 4, 2207 (2013).

    Article  PubMed  CAS  Google Scholar 

  17. Richardson, W.H. Bayesian-based iterative method of image restoration. J. Opt. Sci. Am. 62, 55–59 (1972).

    Article  Google Scholar 

  18. Lucy, L.B. An iterative technique for the rectification of observed distributions. Astron. J. 79, 745–754 (1974).

    Article  Google Scholar 

  19. Dey, N. et al. Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microsc. Res. Tech. 69, 260–266 (2006).

    Article  PubMed  Google Scholar 

  20. Krzic, U. Multiple-view Microscopy with Light-Sheet Based Fluorescence Microscope. PhD thesis, University Heidelberg (2009).

  21. Desai, A. & Mitchison, T.J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Akhmanova, A. & Hoogenraad, C.C. Microtubule plus-end tracking proteins: mechanisms and functions. Curr. Opin. Cell Biol. 17, 47–54 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Matov, A. et al. Analysis of microtubule dynamic instability using a plus-end growth marker. Nat. Methods 7, 761–768 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dogterom, M. & Yurke, B. Measurement of the force-velocity relation for growing microtubules. Science 278, 856–860 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Kandere-Grzybowska, K., Campbell, C., Komarova, Y., Grzybowski, B.A. & Borisy, G.G. Molecular dynamics imaging in micropatterned living cells. Nat. Methods 2, 739–741 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Sulston, J.E., Schierenberg, E., White, J.G. & Thomson, J.N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    Article  CAS  PubMed  Google Scholar 

  27. York, A.G. et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat. Methods 9, 749–754 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bao, Z. et al. Automated cell lineage tracing in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 103, 2707–2712 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Santella, A., Du, Z., Nowotschin, S., Hadjantonakis, A.-K. & Bao, Z. A hybrid blob-slice model for accurate and efficient detection of fluorescence labeled nuclei in 3D. BMC Bioinformatics 11, 580 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Giurumescu, C.A. et al. Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos. Development 139, 4271–4279 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gao, L. et al. Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens. Cell 151, 1370–1385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).

    Article  CAS  Google Scholar 

  33. Bhattacharya, R., Townley, R.A., Berry, K.L. & Bulow, H.E. The PAPS transporter PST-1 is required for heparan sulfation and is essential for viability and neural development in C. elegans. J. Cell Sci. 122, 4492–4504 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hobert, O. et al. Regulation of interneuron function in the C. elegans thermoregulatory pathway by the ttx-3 LIM homeobox gene. Neuron 19, 345–357 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Altun-Gultekin, Z. et al. A regulatory cascade of three homeobox genes, ceh-10, ttx-3 and ceh-23, controls cell fate specification of a defined interneuron class in C. elegans. Development 128, 1951–1969 (2001).

    CAS  PubMed  Google Scholar 

  36. Wenick, A.S. & Hobert, O. Genomic cis-regulatory architecture and trans-acting regulators of a single interneuron-specific gene battery in C. elegans. Dev. Cell 6, 757–770 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Bulow, H.E., Berry, K.L., Topper, L.H., Peles, E. & Hobert, O. Heparan sulfate proteoglycan-dependent induction of axon branching and axon misrouting by the Kallmann syndrome gene kal-1. Proc. Natl. Acad. Sci. USA 99, 6346–6351 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bertrand, V. & Hobert, O. Linking asymmetric cell division to the terminal differentiation program of postmitotic neurons in C. elegans. Dev. Cell 16, 563–575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stavoe, A.K. et al. Synaptic vesicle clustering requires a distinct MIG-10/Lamellipodin isoform and ABI-1 downstream from Netrin. Genes Dev. 26, 2206–2221 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Colón-Ramos, D.A., Margeta, M.A. & Shen, K. Glia promote local synaptogenesis through UNC-6 (netrin) signaling in C. elegans. Science 318, 103–106 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Heiman, M. & Shaham, S. DEX-1 and DYF-7 establish sensory dendrite length by anchoring dendritic tips during cell migration. Cell 137, 344–355 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Truong, T.V., Supatto, W., Koos, D.S., Choi, J.M. & Fraser, S.E. Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat. Methods 8, 757–760 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Fischer, R.S., Wu, Y., Kanchanawong, P., Shroff, H. & Waterman, C.M. Microscopy in 3D: a biologist's toolbox. Trends Cell Biol. 21, 682–691 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Woods, R.P. in Handbook of Medical Imaging Processing and Analysis (ed. Isaac N. Bankman) 529–553 (Academic Press, 2000).

  45. Lehmann, T.M., Gonner, C. & Spitzer, K. Survey: interpolation methods in medical image processing. IEEE Trans. Med. Imaging 18, 1049–1075 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Fischer, R.S., Myers, K.A., Gardel, M.L. & Waterman, C.M. Stiffness-controlled three-dimensional extracellular matrices for high-resolution imaging of cell behavior. Nat. Protoc. 7, 2056–2066 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Fischer, R.S., Gardel, M.L., Ma, X., Adelstein, R.S. & Waterman, C.M. Local cortical tension by myosin II guides 3D endothelial branching. Curr. Biol. 19, 260–265 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. McNally and C.-H. Lee for illuminating discussions, M.R. Reinhardt for helping us with the scientific cMOS, W. Mohler for helping us to share and view 4D data sets, G. Rondeau for help with mechanical design, A. Hoofring for help with illustrations and H. Eden for critical feedback on the manuscript. A.S. and Z.B. acknowledge funding from National Institutes of Health (NIH) grants GM097576 and HD075602. R.C. and D.C.-R. acknowledge funding from US National Institutes of Health (NIH) grants R01 NS076558 and U01HD075602. This work was supported by the Intramural Research Programs of the NIH National Institute of Biomedical Imaging and Bioengineering, the National Institute of Heart, Lung, and Blood, and the Center for Information Technology.

Author information

Authors and Affiliations

Authors

Contributions

Conceived idea and supervised project: H.S. Designed optical system: Y.W. and H.S. Built optical system: Y.W. and P.W.W. Took data and prepared samples: Y.W., P.W. and R.S.F. Implemented joint deconvolution algorithm: A.G.Y. and Y.W. Developed rotation and registration algorithms: J.S. and M.M. Provided guidance on nematode experiments: R.C., A.S., Z.B. and D.A.C.-R. Provided guidance on microtubule experiments: R.S.F. and C.M.W. Provided reagents and materials: R.C., A.S., Z.B., D.A.C.-R., R.S.F., and C.M.W. Analyzed data: Y.W., P.W., R.S.F., R.C., A.S., C.M.W., Z.B., D.A.C.-R. and H.S. Wrote paper: Y.W., J.S., R.S.F., R.C., C.M.W., D.A.C.-R. and H.S.

Corresponding author

Correspondence to Yicong Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Note and Supplementary Table 1 (PDF 1551 kb)

Supplementary Video 1

Comparison of subdiffractive beads with different fusion schemes. (AVI 249 kb)

Supplementary Video 2

Comparison between SDCM and diSPIM on GFP-EB3 microtubules in live human umbilical vein endothelial cells. (AVI 2400 kb)

Supplementary Video 3

Comparison of 3D GFP-EB3 microtubule dynamics in human umbilical vein endothelial cells of different thickness and in different cellular environments with diSPIM. (AVI 4162 kb)

Supplementary Video 4

SDCM volumetric time series of GFP-histones in live, BV24 nematode embryos. (AVI 10074 kb)

Supplementary Video 5

Comparative iSPIM and diSPIM volumetric time series of GFPhistones in a live BV24 nematode embryo from the 4 cell stage up to hatching. (AVI 26620 kb)

Supplementary Video 6

Comparison between iSPIM and diSPIM, when visualizing neuronal processes in developing embryo. (AVI 11921 kb)

Supplementary Video 7

Comparison between iSPIM and diSPIM, highlighting differences in a single volume with GFP-labeled AIY neurons. (AVI 507 kb)

Supplementary Video 8

DiSPIM enables visualization of AIY outgrowth processes in a live DCR553 nematode embryo. (AVI 32825 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Wawrzusin, P., Senseney, J. et al. Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat Biotechnol 31, 1032–1038 (2013). https://doi.org/10.1038/nbt.2713

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2713

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing