Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay

Abstract

It has been hypothesized that carcinoma metastasis is initiated by a subpopulation of circulating tumor cells (CTCs) found in the blood of patients. However, although the presence of CTCs is an indicator of poor prognosis in several carcinoma entities, the existence and phenotype of metastasis-initiating cells (MICs) among CTCs has not been experimentally demonstrated. Here we developed a xenograft assay and used it to show that primary human luminal breast cancer CTCs contain MICs that give rise to bone, lung and liver metastases in mice. These MIC-containing CTC populations expressed EPCAM, CD44, CD47 and MET. In a small cohort of patients with metastases, the number of EPCAM+CD44+CD47+MET+ CTCs, but not of bulk EPCAM+ CTCs, correlated with lower overall survival and increased number of metastasic sites. These data describe functional circulating MICs and associated markers, which may aid the design of better tools to diagnose and treat metastatic breast cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enumeration of CTCs and functional assay to detect MIC activity.
Figure 2: Patient CTCs expressing CD44, CD47 and MET contain MICs.
Figure 3: Expression of CD44, CD47 and MET during tumor progression.
Figure 4: Expression of CD44, CD47 and MET on luminal breast cancer patient CTCs.
Figure 5: CD44+MET+CD47+ CTCs increase with disease progression and correlate with patient metastatic burden and overall survival.

References

  1. Kim, M.Y. et al. Tumor self-seeding by circulating cancer cells. Cell 139, 1315–1326 (2009).

    Article  Google Scholar 

  2. Nguyen, D.X., Bos, P.D. & Massague, J. Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer 9, 274–284 (2009).

    Article  CAS  Google Scholar 

  3. Pantel, K., Alix-Panabieres, C. & Riethdorf, S. Cancer micrometastases. Nat. Rev. Clin. Oncol. 6, 339–351 (2009).

    Article  CAS  Google Scholar 

  4. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    Article  Google Scholar 

  5. Yu, M., Stott, S., Toner, M., Maheswaran, S. & Haber, D.A. Circulating tumor cells: approaches to isolation and characterization. J. Cell Biol. 192, 373–382 (2011).

    Article  CAS  Google Scholar 

  6. Krebs, M.G. et al. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J. Clin. Oncol. 29, 1556–1563 (2011).

    Article  Google Scholar 

  7. Cohen, S.J. et al. Prognostic significance of circulating tumor cells in patients with metastatic colorectal cancer. Ann. Oncol. 20, 1223–1229 (2009).

    Article  CAS  Google Scholar 

  8. de Bono, J.S. et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 14, 6302–6309 (2008).

    Article  CAS  Google Scholar 

  9. Cristofanilli, M. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004).

    Article  CAS  Google Scholar 

  10. Budd, G.T. et al. Circulating tumor cells versus imaging–predicting overall survival in metastatic breast cancer. Clin. Cancer Res. 12, 6403–6409 (2006).

    Article  CAS  Google Scholar 

  11. Kling, J. Beyond counting tumor cells. Nat. Biotechnol. 30, 578–580 (2012).

    Article  CAS  Google Scholar 

  12. Kalluri, R. & Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    Article  CAS  Google Scholar 

  13. Rhim, A.D. et al. EMT and dissemination precede pancreatic tumor formation. Cell 148, 349–361 (2012).

    Article  CAS  Google Scholar 

  14. Yu, M. et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580–584 (2013).

    Article  CAS  Google Scholar 

  15. Braun, S. et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl. J. Med. 353, 793–802 (2005).

    Article  CAS  Google Scholar 

  16. Shiozawa, Y. et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J. Clin. Invest. 121, 1298–1312 (2011).

    Article  CAS  Google Scholar 

  17. Riethdorf, S. et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin. Cancer Res. 13, 920–928 (2007).

    Article  CAS  Google Scholar 

  18. Ito, M. et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100, 3175–3182 (2002).

    Article  CAS  Google Scholar 

  19. Mazurier, F., Doedens, M., Gan, O.I. & Dick, J.E. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat. Med. 9, 959–963 (2003).

    Article  CAS  Google Scholar 

  20. Lapidot T., Dar A. & Kollet, O. How do stem cells find their way home? Blood 106, 1901–1910 (2005).

  21. Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J. & Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  Google Scholar 

  22. Liu, H. et al. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc. Natl. Acad. Sci. USA 107, 18115–18120 (2010).

    Article  CAS  Google Scholar 

  23. Willingham, S.B. et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl. Acad. Sci. USA 109, 6662–6667 (2012).

    Article  CAS  Google Scholar 

  24. Majeti, R. et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138, 286–299 (2009).

    Article  CAS  Google Scholar 

  25. Chao, M.P. et al. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res. 71, 1374–1384 (2011).

    Article  CAS  Google Scholar 

  26. Chan, K.S. et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc. Natl. Acad. Sci. USA 106, 14016–14021 (2009).

    Article  CAS  Google Scholar 

  27. Chao, M.P. et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142, 699–713 (2010).

    Article  CAS  Google Scholar 

  28. Edris, B. et al. Antibody therapy targeting the CD47 protein is effective in a model of aggressive metastatic leiomyosarcoma. Proc. Natl. Acad. Sci. USA 109, 6656–6661 (2012).

    Article  CAS  Google Scholar 

  29. Nagahara, M. et al. Correlated expression of CD47 and SIRPA in bone marrow and in peripheral blood predicts recurrence in breast cancer patients. Clin. Cancer Res. 16, 4625–4635 (2010).

    Article  CAS  Google Scholar 

  30. Trusolino, L., Bertotti, A. & Comoglio, P.M. MET signalling: principles and functions in development, organ regeneration and cancer. Nat. Rev. Mol. Cell Biol. 11, 834–848 (2010).

    Article  CAS  Google Scholar 

  31. Orian-Rousseau, V. CD44, a therapeutic target for metastasising tumours. Eur. J. Cancer 46, 1271–1277 (2010).

    Article  CAS  Google Scholar 

  32. Shibue, T. & Weinberg, R.A. Metastatic colonization: settlement, adaptation and propagation of tumor cells in a foreign tissue environment. Semin. Cancer Biol. 21, 99–106 (2011).

    Article  CAS  Google Scholar 

  33. Kasimir-Bauer, S., Hoffmann, O., Wallwiener, D., Kimmig, R. & Fehm, T. Expression of stem cell and epithelial-mesenchymal transition markers in primary breast cancer patients with circulating tumor cells. Breast Cancer Res. 14, R15 (2012).

    Article  CAS  Google Scholar 

  34. Powell, A.A. et al. Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS ONE 7, e33788 (2012).

    Article  CAS  Google Scholar 

  35. Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    Article  CAS  Google Scholar 

  36. Stott, S.L. et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. USA 107, 18392–18397 (2010).

    Article  CAS  Google Scholar 

  37. Chao, M.P., Majeti, R. & Weissman, I.L. Programmed cell removal: a new obstacle in the road to developing cancer. Nat. Rev. Cancer 12, 58–67 (2012).

    Article  CAS  Google Scholar 

  38. Orian-Rousseau, V., Chen, L., Sleeman, J.P., Herrlich, P. & Ponta, H. CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev. 16, 3074–3086 (2002).

    Article  CAS  Google Scholar 

  39. Baccelli, I. & Trumpp, A. The evolving concept of cancer and metastasis stem cells. J. Cell Biol. 198, 281–293 (2012).

    Article  CAS  Google Scholar 

  40. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    Article  CAS  Google Scholar 

  41. Chao, M.P., Weissman, I.L. & Majeti, R. The CD47-SIRPalpha pathway in cancer immune evasion and potential therapeutic implications. Curr. Opin. Immunol. 24, 225–232 (2012).

    Article  CAS  Google Scholar 

  42. Gherardi, E., Birchmeier, W., Birchmeier, C. & Woude, G.V. Targeting MET in cancer: rationale and progress. Nat. Rev. Cancer 12, 89–103 (2012).

    Article  CAS  Google Scholar 

  43. Riethdorf, S. et al. Detection and HER2 expression of circulating tumor cells: prospective monitoring in breast cancer patients treated in the neoadjuvant GeparQuattro trial. Clin. Cancer Res. 16, 2634–2645 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Oskarsson, M. Milsom, H. Medyouf and E. Espinet for helpful discussions, and M. Stoupiec and K. Leotta for technical support, members of the DKFZ FACS core facility, S. Schmitt and K. Hexel for excellent cell sorting, and members of the DKFZ animal facility for animal husbandry. This work was supported by the BioRN Spitzencluster “Molecular and Cell Based Medicine” supported by the German Bundesministerium für Bildung und Forschung, the EU FP7 Program “EuroSyStem”, the Sonderforschungsbereich SFB-873 funded by the Deutsche Forschungsgemeinschaft, the “TIME” consortium Project and the Dietmar Hopp Foundation (all to A.T.) and the European Research Council Advanced Investigator Grant DISSECT (269081 to K.P.).

Author information

Authors and Affiliations

Authors

Contributions

A.T. and K.P. had the initial idea of the assay. A.T. conceived the project and supervised all research. I.B. and A.T. wrote the manuscript and designed the experiments. I.B. performed the majority of experiments. A. Schillert, C.K., T.H., M. Saini and M. Sprick provided technical help for some experiments. T.H.-L. performed part of the statistical analyses. A. Schneeweiss, M.W., M. Scharpff and F.M. provided patient samples and clinical data. S.R. and K.P. performed CellSearch and fluorescence in situ hybridization analyses. A. Stenzinger, V.V., W.W. and H.P.S. carried out histology analyses. T.B. performed animal imaging.

Corresponding author

Correspondence to Andreas Trumpp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–4 (PDF 2400 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baccelli, I., Schneeweiss, A., Riethdorf, S. et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31, 539–544 (2013). https://doi.org/10.1038/nbt.2576

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2576

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer