Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Large-scale in silico modeling of metabolic interactions between cell types in the human brain

Abstract

Metabolic interactions between multiple cell types are difficult to model using existing approaches. Here we present a workflow that integrates gene expression data, proteomics data and literature-based manual curation to model human metabolism within and between different types of cells. Transport reactions are used to account for the transfer of metabolites between models of different cell types via the interstitial fluid. We apply the method to create models of brain energy metabolism that recapitulate metabolic interactions between astrocytes and various neuron types relevant to Alzheimer's disease. Analysis of the models identifies genes and pathways that may explain observed experimental phenomena, including the differential effects of the disease on cell types and regions of the brain. Constraint-based modeling can thus contribute to the study and analysis of multicellular metabolic processes in the human tissue microenvironment and provide detailed mechanistic insight into high-throughput data analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A workflow for bridging the genotype-phenotype gap with the use of high-throughput data and manual curation for the construction of multicellular models of metabolism.
Figure 2: General structure of the models.
Figure 3: Decrease in AKGDm activity associated with Alzheimer's disease (AD) shows cell-type and regional effects in silico consistent with experimental data.
Figure 4: Analysis of metabolic pathways in different regions of brains affected by Alzheimer's.
Figure 5: Singular value decomposition (SVD) of feasible pathways elucidates potential pathways that allow for coupling of mitochondria acetyl-CoA metabolism and cytosolic acetylcholine production.
Figure 6: Model-aided prediction of cholinergic contribution is consistent with experimental acetylcholine production.

Similar content being viewed by others

References

  1. Feist, A.M. & Palsson, B.Ø. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat. Biotechnol. 26, 659–667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Oberhardt, M.A., Palsson, B.Ø. & Papin, J.A. Applications of genome-scale metabolic reconstructions. Mol. Syst. Biol. 5, 320 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Breitling, R., Vitkup, D. & Barrett, M.P. New surveyor tools for charting microbial metabolic maps. Nat. Rev. Microbiol. 6, 156–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Thiele, I. & Palsson, B.O. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lewis, N.E., Jamshidi, N., Thiele, I. & Palsson, B.Ø. in Encyclopedia of Complexity and Systems Science (ed. Meyers, R.A.) 5535–5552 (Springer, New York, 2009).

  6. Orth, J.D., Thiele, I. & Palsson, B.O. What is flux balance analysis? Nat. Biotechnol. 28, 245–248 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Duarte, N.C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl. Acad. Sci. USA 104, 1777–1782 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Becker, S.A. & Palsson, B.O. Context-specific metabolic networks are consistent with experiments. PLOS Comput. Biol. 4, e1000082 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shlomi, T., Cabili, M.N., Herrgard, M.J., Palsson, B.Ø. & Ruppin, E. Network-based prediction of human tissue–specific metabolism. Nat. Biotechnol. 26, 1003–1010 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Jerby, L., Shlomi, T. & Ruppin, E. Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol. Syst. Biol. 6, 401 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ponten, F. et al. A global view of protein expression in human cells, tissues, and organs. Mol. Syst. Biol. 5, 337 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Palsson, B.O. in Systems Biology: Properties of Reconstructed Networks 322 (Cambridge University Press, Cambridge/New York, 2006).

  13. Mishra, G.R. et al. Human protein reference database–2006 update. Nucleic Acids Res. 34, D411–D414 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Fujii, Y., Imanishi, T. & Gojobori, T. H-Invitational Database: integrated database of human genes. Tanpakushitsu Kakusan Koso 49, 1937–1943 (2004).

    CAS  PubMed  Google Scholar 

  15. Reidegeld, K.A. et al. The power of cooperative investigation: summary and comparison of the HUPO Brain Proteome Project pilot study results. Proteomics 6, 4997–5014 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Chatziioannou, A., Palaiologos, G. & Kolisis, F.N. Metabolic flux analysis as a tool for the elucidation of the metabolism of neurotransmitter glutamate. Metab. Eng. 5, 201–210 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Cakir, T., Alsan, S., Saybasili, H., Akin, A. & Ulgen, K.O. Reconstruction and flux analysis of coupling between metabolic pathways of astrocytes and neurons: application to cerebral hypoxia. Theor. Biol. Med. Model. 4, 48 (2007).

    Article  PubMed  Google Scholar 

  18. Occhipinti, R., Puchowicz, M.A., LaManna, J.C., Somersalo, E. & Calvetti, D. Statistical analysis of metabolic pathways of brain metabolism at steady state. Ann. Biomed. Eng. 35, 886–902 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Reiman, E.M. et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proc. Natl. Acad. Sci. USA 101, 284–289 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Ginsberg, S.D., Che, S., Counts, S.E. & Mufson, E.J. Single cell gene expression profiling in Alzheimer's disease. NeuroRx 3, 302–318 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lai, M.K.P., Ramirez, M.J., Tsang, S.W.Y. & Francis, P.T. Alzheimer's disease as a neurotransmitter disease in Neurobiology of Alzheimer' Disease (eds. Dawbarn, D. & Allen, S.J.) 245–281 (Oxford University Press, New York, 2007).

  22. Fukui, H., Diaz, F., Garcia, S. & Moraes, C.T. Cytochrome c oxidase deficiency in neurons decreases both oxidative stress and amyloid formation in a mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. USA 104, 14163–14168 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bubber, P., Haroutunian, V., Fisch, G., Blass, J.P. & Gibson, G.E. Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann. Neurol. 57, 695–703 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Gibson, G.E. et al. Alpha-ketoglutarate dehydrogenase in Alzheimer brains bearing the APP670/671 mutation. Ann. Neurol. 44, 676–681 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Casley, C.S., Canevari, L., Land, J.M., Clark, J.B. & Sharpe, M.A. Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J. Neurochem. 80, 91–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Hoshi, M. et al. Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain. Proc. Natl. Acad. Sci. USA 93, 2719–2723 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gorman, A.M., Ceccatelli, S. & Orrenius, S. Role of mitochondria in neuronal apoptosis. Dev. Neurosci. 22, 348–358 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Santos, S.S. et al. Inhibitors of the alpha-ketoglutarate dehydrogenase complex alter [1–13C]glucose and [U-13C]glutamate metabolism in cerebellar granule neurons. J. Neurosci. Res. 83, 450–458 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Hassel, B., Johannessen, C.U., Sonnewald, U. & Fonnum, F. Quantification of the GABA shunt and the importance of the GABA shunt versus the 2-oxoglutarate dehydrogenase pathway in GABAergic neurons. J. Neurochem. 71, 1511–1518 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Liang, W.S. et al. Altered neuronal gene expression in brain regions differentially affected by Alzheimer's disease: a reference data set. Physiol. Genomics 33, 240–256 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Stuhmer, T., Anderson, S.A., Ekker, M. & Rubenstein, J.L. Ectopic expression of the Dlx genes induces glutamic acid decarboxylase and Dlx expression. Development 129, 245–252 (2002).

    CAS  PubMed  Google Scholar 

  32. Ibanez, V. et al. Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer's disease. Neurology 50, 1585–1593 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Schramm, G. et al. PathWave: discovering patterns of differentially regulated enzymes in metabolic pathways. Bioinformatics 26, 1225–1231 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Ragozzino, M.E., Pal, S.N., Unick, K., Stefani, M.R. & Gold, P.E. Modulation of hippocampal acetylcholine release and spontaneous alternation scores by intrahippocampal glucose injections. J. Neurosci. 18, 1595–1601 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Watson, G.S. & Craft, S. Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer's disease. Eur. J. Pharmacol. 490, 97–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Cooper, J.R. Unsolved problems in the cholinergic nervous system. J. Neurochem. 63, 395–399 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Karczmar, A.G. Cholinergic cells and pathways in Exploring the Vertebrate Cholinergic Nervous System 686 (Springer, New York, 2006).

  38. Gibson, G.E., Jope, R. & Blass, J.P. Decreased synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces. Biochem. J. 148, 17–23 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abbott, N.J., Ronnback, L. & Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Thompson, M.D., Knee, K. & Golden, C.J. Olfaction in persons with Alzheimer's disease. Neuropsychol. Rev. 8, 11–23 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Schryer, D.W., Peterson, P., Paalme, T. & Vendelin, M. Bidirectionality and compartmentation of metabolic fluxes are revealed in the dynamics of isotopomer networks. Int. J. Mol. Sci. 10, 1697–1718 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Serres, S., Raffard, G., Franconi, J.M. & Merle, M. Close coupling between astrocytic and neuronal metabolisms to fulfill anaplerotic and energy needs in the rat brain. J. Cereb. Blood Flow Metab. 28, 712–724 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Bordbar, A. et al. Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol. Syst. Biol. 6, 422 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLoS. Comput. Biol. 6, e1000938 (2010).

  45. Lee, D.S. et al. The implications of human metabolic network topology for disease comorbidity. Proc. Natl. Acad. Sci. USA 105, 9880–9885 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Palsson, B.O. & Zengler, K. The challenges of integrating multi-omics data sets. Nat. Chem. Biol. 6, 787–789 (2010).

    Article  PubMed  Google Scholar 

  47. Lying-Tunell, U., Lindblad, B.S., Malmlund, H.O. & Persson, B. Cerebral blood flow and metabolic rate of oxygen, glucose, lactate, pyruvate, ketone bodies and amino acids. Acta Neurol. Scand. 62, 265–275 (1980).

    Article  CAS  PubMed  Google Scholar 

  48. Lying-Tunell, U., Lindblad, B.S., Malmlund, H.O. & Persson, B. Cerebral blood flow and metabolic rate of oxygen, glucose, lactate, pyruvate, ketone bodies and amino acids. Acta Neurol. Scand. 63, 337–350 (1981).

    Article  CAS  PubMed  Google Scholar 

  49. Tischfield, M.A. et al. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 140, 74–87 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim, K.K., Adelstein, R.S. & Kawamoto, S. Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J. Biol. Chem. 284, 31052–31061 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. De Camilli, P., Cameron, R. & Greengard, P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections. J. Cell Biol. 96, 1337–1354 (1983).

    Article  CAS  PubMed  Google Scholar 

  52. Olave, I., Wang, W., Xue, Y., Kuo, A. & Crabtree, G.R. Identification of a polymorphic, neuron-specific chromatin remodeling complex. Genes Dev. 16, 2509–2517 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29, 1165–1188 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank G. Gibson at Cornell University, I. Thiele at the University of Iceland and M. Abrams, M. Mo and C. Barrett at UCSD for suggestions pertaining to this work. This work was funded in part by a Fulbright fellowship, a National Science Foundation IGERT Plant Systems Biology training grant (no. DGE-0504645), US National Institutes of Health grants 2R01GM068837_05A1 and RO1 GM071808 and the Helmholtz Alliance on Systems Biology and the BMBF by the NGFN+ neuroblastoma project ENGINE.

Author information

Authors and Affiliations

Authors

Contributions

N.E.L., J.K.C., A.Y., N.P., M.P.A. and B.O.P. conceived and designed the model. N.E.L., J.K.C., G.S., R.K., R.E., J.S., A.B. and R.A.L. performed data analyses. The manuscript was written by N.E.L., G.S., J.S., A.B. and B.O.P.

Corresponding author

Correspondence to Bernhard Ø Palsson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Notes (PDF 1971 kb)

Supplementary Model 1

All neuron types normal (ZIP 72 kb)

Supplementary Model 2

All neuron types normal elderly (ZIP 72 kb)

Supplementary Model 3

All neuron types Alzheimer's (ZIP 72 kb)

Supplementary Table 1

Model rxns (XLS 317 kb)

Supplementary Table 2

Model metabolites (XLS 109 kb)

Supplementary Table 3

Model genes (XLS 50 kb)

Supplementary Table 4

Model S. matrix (ZIP 904 kb)

Supplementary Table 5

Model parameters (XLS 24 kb)

Supplementary Table 6

Significant Pathwave pathways (XLS 25 kb)

Supplementary Table 7

Protein data accession numbers (XLS 18 kb)

Supplementary Table 8

Comparison with other models (XLS 18 kb)

Supplementary Table 9

Pathwave pathway classes (XLS 42 kb)

Supplementary Table 10

Pathwave exception metabolites (XLS 15 kb)

Supplementary Table 11

Significant Pathwave features (XLS 168 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, N., Schramm, G., Bordbar, A. et al. Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat Biotechnol 28, 1279–1285 (2010). https://doi.org/10.1038/nbt.1711

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1711

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing