Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The rise of algae in Cryogenian oceans and the emergence of animals

Abstract

The transition from dominant bacterial to eukaryotic marine primary productivity was one of the most profound ecological revolutions in the Earth’s history, reorganizing the distribution of carbon and nutrients in the water column and increasing energy flow to higher trophic levels. But the causes and geological timing of this transition, as well as possible links with rising atmospheric oxygen levels1 and the evolution of animals2, remain obscure. Here we present a molecular fossil record of eukaryotic steroids demonstrating that bacteria were the only notable primary producers in the oceans before the Cryogenian period (720–635 million years ago). Increasing steroid diversity and abundance marks the rapid rise of marine planktonic algae (Archaeplastida) in the narrow time interval between the Sturtian and Marinoan ‘snowball Earth’ glaciations, 659–645 million years ago. We propose that the incumbency of cyanobacteria was broken by a surge of nutrients supplied by the Sturtian deglaciation3. The ‘Rise of Algae’ created food webs with more efficient nutrient and energy transfers4, driving ecosystems towards larger and increasingly complex organisms. This effect is recorded by the concomitant appearance of biomarkers for sponges5 and predatory rhizarians, and the subsequent radiation of eumetazoans in the Ediacaran period2.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time chart from 850 Myr ago to the present summarizing environmental, biomarker and fossil data and highlighting the position of the rise of algae.

References

  1. Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014)

    Article  ADS  CAS  Google Scholar 

  2. Butterfield, N. J. Macroevolutionary turnover through the Ediacaran transition: ecological and biogeochemical implications. Geol. Soc. Spec. Publ. 326, 55–66 (2009)

    Article  ADS  CAS  Google Scholar 

  3. Planavsky, N. J. et al. The evolution of the marine phosphate reservoir. Nature 467, 1088–1090 (2010)

    Article  ADS  CAS  Google Scholar 

  4. Irwin, A. J., Finkel, Z. V., Schofield, O. M. E. & Falkowski, P. G. Scaling-up from nutrient physiology to the size-structure of phytoplankton communities. J. Plankton Res. 28, 459–471 (2006)

    Article  Google Scholar 

  5. Love, G. D. et al. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457, 718–721 (2009)

    Article  ADS  CAS  Google Scholar 

  6. Sánchez-Baracaldo, P., Raven, J. A., Pisani, D. & Knoll, A. H. Early photosynthetic eukaryotes inhabited salinity habitats. Proc. Natl Acad. Sci. USA (in the press)

  7. Butterfield, N. J. Proterozoic photosynthesis – a critical review. Palaeontology 58, 953–972 (2015)

    Article  Google Scholar 

  8. Knoll, A. H., Summons, R., Waldbauer, J. R. & Zumberge, J. E. in Evolution of Primary Producers in the Sea (eds Falkowski, P. & Knoll, A. H. ) 133–163 (Elsevier, 2007)

  9. Brocks, J. J. et al. Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth. Geobiology 14, 129–149 (2016)

    Article  CAS  Google Scholar 

  10. Grantham, P. J. & Wakefield, L. L. Variations in the sterane carbon number distribution of marine source rock derived oils through geological time. Org. Geochem. 12, 61–73 (1988)

    Article  CAS  Google Scholar 

  11. Summons, R. E. et al. Distinctive hydrocarbon biomarkers from fossiliferous sediments of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona. Geochim. Cosmochim. Acta 52, 2625–2637 (1988)

    Article  ADS  CAS  Google Scholar 

  12. Kodner, R. B., Pearson, A., Summons, R. E. & Knoll, A. H. Sterols in red and green algae: quantification, phylogeny, and relevance for the interpretation of geologic steranes. Geobiology 6, 411–420 (2008)

    Article  CAS  Google Scholar 

  13. Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball Earth. Science 281, 1342–1346 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Cohen, P. A. & Macdonald, F. A. The Proterozoic record of eukaryotes. Paleobiology 41, 610–632 (2015)

    Article  Google Scholar 

  15. Riedman, L. A., Porter, S. M., Halverson, G. P., Hurtgen, M. T. & Junium, C. K. Organic-walled microfossil assemblages from glacial and interglacial Neoproterozoic units of Australia and Svalbard. Geology 42, 1011–1014 (2014)

    Article  ADS  Google Scholar 

  16. Reinhard, C. T. et al. Evolution of the global phosphorus cycle. Nature 541, 386–389 (2017)

    Article  ADS  CAS  Google Scholar 

  17. Laakso, T. A. & Schrag, D. P. Regulation of atmospheric oxygen during the Proterozoic. Earth Planet. Sci. Lett. 388, 81–91 (2014)

    Article  ADS  CAS  Google Scholar 

  18. Derry, L. A. Causes and consequences of mid-Proterozoic anoxia. Geophys. Res. Lett. 42, 8538–8546 (2015)

    Article  ADS  CAS  Google Scholar 

  19. Mills, B., Watson, A. J., Goldblatt, C., Boyle, R. & Lenton, T. M. Timing of Neoproterozoic glaciations linked to transport-limited global weathering. Nat. Geosci. 4, 861–864 (2011)

    Article  ADS  CAS  Google Scholar 

  20. Sahoo, S. K. et al. Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology 14, 457–468 (2016)

    Article  CAS  Google Scholar 

  21. Pogge von Strandmann, P. A. E. et al. Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere. Nat. Commun. 6, 10157 (2015)

    Article  ADS  CAS  Google Scholar 

  22. Yang, J., Jansen, M. F., Macdonald, F. A. & Abbot, D. S. Persistence of a freshwater surface ocean after a snowball Earth. Geology 45, 615–618 (2017)

    Article  ADS  CAS  Google Scholar 

  23. Aguilera, A. Eukaryotic organisms in extreme acidic environments, the Río Tinto case. Life 3, 363–374 (2013)

    Article  ADS  Google Scholar 

  24. Yamaoka, T., Satoh, K. & Katoh, S. Photosynthetic activities of a thermophilic blue-green alga. Plant Cell Physiol. 19, 943–954 (1978)

    Article  CAS  Google Scholar 

  25. Sun, Y. et al. Lethally hot temperatures during the Early Triassic greenhouse. Science 338, 366–370 (2012)

    Article  ADS  CAS  Google Scholar 

  26. Knoll, A. H. & Follows, M. J. A bottom-up perspective on ecosystem change in Mesozoic oceans. Proc. R. Soc. B 283, 20161755 (2016)

  27. Worden, A. Z. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015)

    Article  Google Scholar 

  28. Ye, Q. et al. The survival of benthic macroscopic phototrophs on a Neoproterozoic snowball Earth. Geology 43, 507–510 (2015)

    Article  ADS  Google Scholar 

  29. Knoll, A. H. Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo. Proc. Natl Acad. Sci. USA 91, 6743–6750 (1994)

    Article  ADS  CAS  Google Scholar 

  30. Pu, J. P. et al. Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology 44, 955–958 (2016)

    Article  ADS  CAS  Google Scholar 

  31. Grosjean, E., Love, G. D., Stalvies, C., Fike, D. A. & Summons, R. E. Origin of petroleum in the Neoproterozoic–Cambrian South Oman Salt Basin. Org. Geochem. 40, 87–110 (2009)

    Article  CAS  Google Scholar 

  32. Canfield, D. E. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005)

    Article  ADS  CAS  Google Scholar 

  33. Krissansen-Totton, J., Buick, R. & Catling, D. C. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. Am. J. Sci. 315, 275–316 (2015)

    Article  ADS  CAS  Google Scholar 

  34. Cox, G. M. et al. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth. Earth Planet. Sci. Lett. 446, 89–99 (2016)

    Article  ADS  CAS  Google Scholar 

  35. Grabenstatter, J. et al. Identification of 24-n-propylidenecholesterol in a member of the Foraminifera. Org. Geochem. 63, 145–151 (2013)

    Article  CAS  Google Scholar 

  36. Jarrett, A., Schinteie, R., Hope, J. M. & Brocks, J. J. Micro-ablation, a new technique to remove drilling fluids and other contaminants from fragmented and fissile rock material. Org. Geochem. 61, 57–65 (2013)

    Article  CAS  Google Scholar 

  37. Schinteie, R. & Brocks, J. J. Evidence for ancient halophiles? Testing biomarker syngeneity of evaporites from Neoproterozoic and Cambrian strata. Org. Geochem. 72, 46–58 (2014)

    Article  CAS  Google Scholar 

  38. Brocks, J. J., Grosjean, E. & Logan, G. A. Assessing biomarker syngeneity using branched alkanes with quaternary carbon (BAQCs) and other plastic contaminants. Geochim. Cosmochim. Acta 72, 871–888 (2008)

    Article  ADS  CAS  Google Scholar 

  39. Brocks, J. J. Millimeter-scale concentration gradients of hydrocarbons in Archean shales: live-oil escape or fingerprint of contamination? Geochim. Cosmochim. Acta 75, 3196–3213 (2011)

    Article  ADS  CAS  Google Scholar 

  40. French, K. L. et al. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Natl Acad. Sci. USA 112, 5915–5920 (2015)

    Article  ADS  CAS  Google Scholar 

  41. Schwark, L. & Empt, P. Sterane biomarkers as indicators of palaeozoic algal evolution and extinction events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 240, 225–236 (2006)

    Article  Google Scholar 

  42. Brocks, J. J. & Hope, J. M. Tailing of chromatographic peaks in GC–MS caused by interaction of halogenated solvents with the ion source. J. Chromatogr. Sci. 52, 471–475 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding support for this work came from Australian Research Council (ARC) grants DP0557499, DP1095247, DP160100607 and DP170100556. We thank the Geological Survey of Western Australia (GSWA), the Northern Territory Geological Survey (NTGS), and S. Porter and M. Moczydłowska for access to samples. J. M. Hope provided technical assistance, including the maintenance of mass spectrometers at The Australian National University.

Author information

Authors and Affiliations

Authors

Contributions

J.J.B. conceived the project and processed and interpreted the data. A.J.M.J. analysed and interpreted all biomarkers from the Amadeus Basin and Chuar Group. E.S. analysed biomarkers from the Western Officer Basin and Visingsö Group. T.L. collated data from the Ediacaran and Phanerozoic, and processed Tonian biomarker data. J.J.B. wrote the paper with contributions from C.H. and Y.H.

Corresponding author

Correspondence to Jochen J. Brocks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks N. Planavsky, J. Sepúlveda and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 MRM chromatograms of M+ → 217 precursor–product transitions contrasting the sterane distribution of the Cryogenian Aralka Formation with a Phanerozoic oil.

Aralka sample 13J903 (drillcore BR05; 480.45 m) denoted by coloured traces; the AGSO-II industrial standard (a mixture of representative Phanerozoic oils) denoted by grey traces. a, C30 steranes. b, C29 steranes. c, C28 steranes. d, C27 steranes.

Extended Data Figure 2 MRM chromatograms of M+ → 217 precursor–product transitions contrasting the sterane distribution of the Tonian Steptoe Formation with a Phanerozoic oil.

Steptoe sample 14B213 (drillcore Empress-1A; 588.21 m) denoted by coloured traces; the AGSO-II industrial standard (a mixture of representative Phanerozoic oils) denoted by grey traces. a, C30 steranes. b, C29 steranes. c, C28 steranes. d, C27 steranes.

Extended Data Figure 3 MRM chromatograms of M+ → 217 precursor–product transitions contrasting the sterane distribution of the Kanpa Formation with a Phanerozoic oil.

Kanpa sample 14B211 (drillcore Empress-1A; 830.35 m) denoted by coloured traces; the AGSO-II industrial standard (a mixture of representative Phanerozoic oils) denoted by grey traces. a, C30 steranes. b, C29 steranes. c, C28 steranes, highlighting the presence of indigenous ergostane (erg) and cryostane (cryo). d, C27 steranes.

Extended Data Figure 4 MRM chromatograms of M+ → 217 precursor–product transitions contrasting the sterane distribution of the Chuar Group with a Phanerozoic oil.

Outcrop sample 10J092 (1,494 m above base of Chuar Group) denoted by coloured traces; the AGSO-II industrial standard (a mixture of representative Phanerozoic oils) denoted by grey traces. a, C30 steranes. b, C29 steranes. c, C28 steranes, highlighting the presence of indigenous cryostane but the absence of ergostane; d, C27 steranes.

Extended Data Figure 5 MRM chromatograms of M+ → 217 precursor–product transitions contrasting the sterane distribution of the Wallara Formation with a Phanerozoic oil.

Wallara sample 11J021 (drillcore BR05; 573.06 m) denoted by coloured traces; the AGSO-II industrial standard (a mixture of representative Phanerozoic oils) denoted by grey traces. a, C30 steranes. b, C29 steranes. c, C28 steranes. d, C27 steranes.

Extended Data Figure 6 MRM chromatograms of M+ → 217 precursor–product transitions contrasting the sterane distribution of the Johnnys Creek Formation with a Phanerozoic oil.

Johnnys Creek sample 11J024 (drillcore BR05; 816.26 m) denoted by coloured traces; the AGSO-II industrial standard (a mixture of representative Phanerozoic oils) denoted by grey traces. a, C30 steranes. b, C29 steranes. c, C28 steranes. d, C27 steranes.

Extended Data Figure 7 MRM chromatograms comparing C30 and C28 sterane distributions of the Chuar Group (sample 10J092) with a Phanerozoic oil.

AGSO-II industrial standard (a mixture of representative Phanerozoic oils) denoted by grey traces. a, m/z 414 → 217 traces of several Chuar Group samples contain chromatographic peaks with a typical C30 sterane elution pattern. However, elution times are considerably shifted towards the right relative to 24-n-propylcholestane (24-npc) or 24-isopropylcholestane (not shown). The compound may be a homologue of cryostane, but the structure remains unknown. b, Elution behaviour of cryostane in comparison to ergostane. The chromatograms are characterized by MRM M+ → 217 precursor–product transitions.

Extended Data Figure 8 m/z 231 mass chromatograms showing the distribution of triaromatic steroids in Tonian formations.

Insets are magnifications of the main trace to highlight the absence or presence of triaromatic ergosteroids and stigmasteroids. Chol, triaromatic cholesteroid (violet); Erg, triaromatic ergosteroid (blue); Stig, triaromatic stigmasteroid (green). a, Steptoe Fm. 14B213 (Empress-1A, 588.21 m) shows clear cholesteroid signals while ergosteroids and stigmasteroids are below detection limits. b, Kanpa Fm. 12B212 (Empress-1A, 629.60 m). c, Kanpa Fm. (12B204, Empress-1A, 830.35 m) showing triaromatic cholesteroids as well as ergosteroids but an absence of stigmasteroids (the first small peak in the elution position of 20S stigmasteroid is a different compound—this is highlighted by the absence of the 20R isomer, which should also always be present). d, Hussar Fm. 14B202 (Empress-1A, 1072.85 m). e, Chuar Group 10J093 (outcrop, 1,544.2 m above base of group). f, Visingsö Group (VG-20-03, outcrop); signals at the elution position of triaromatic ergosteroids are too low for positive identification, but stigmasteroids are clearly beneath detection limits (see comment in c). g, The AGSO-II industrial standard for comparison of triaromatic steroid elution positions.

Extended Data Table 1 Information on Proterozoic samples
Extended Data Table 2 Indigenous Tonian and Cryogenian sterane and triaromatic steroid data

Related audio

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, additional references and Supplementary Table 1. (PDF 934 kb)

Reporting Summary (PDF 67 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brocks, J., Jarrett, A., Sirantoine, E. et al. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578–581 (2017). https://doi.org/10.1038/nature23457

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature23457

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing