Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The life of diatoms in the world's oceans

Abstract

Marine diatoms rose to prominence about 100 million years ago and today generate most of the organic matter that serves as food for life in the sea. They exist in a dilute world where compounds essential for growth are recycled and shared, and they greatly influence global climate, atmospheric carbon dioxide concentration and marine ecosystem function. How these essential organisms will respond to the rapidly changing conditions in today's oceans is critical for the health of the environment and is being uncovered by studies of their genomes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Micrographs of different diatom species.
Figure 2: Endosymbiosis in diatoms.
Figure 3: Estimated timing of divergence of the four major diatom lineages and coincident events in Earth's history.
Figure 4: The effect of iron fertilization on diatoms.

References

  1. Nelson, D. M., Treguer, P., Brzezinski, M. A., Leynaert, A. & Queguiner, B. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cycles 9, 359–372 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Sarthou, G., Timmermans, K. R., Blain, S. & Treguer, P. Growth physiology and fate of diatoms in the ocean: a review. J. Sea Res. 53, 25–42 (2005).

    Article  ADS  CAS  Google Scholar 

  4. Denman, K. L. Climate change, ocean processes and ocean iron fertilization. Mar. Ecol. Prog. Ser. 364, 219–225 (2008).

    Article  ADS  Google Scholar 

  5. Armbrust, E. V. et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–86 (2004). This paper describes results from the first diatom genome-sequencing project.

    Article  ADS  CAS  Google Scholar 

  6. Bowler, C. et al. The Phaeodactylum reveals the evolutionary history of diatom genomes. Nature 456, 239–244 (2008). This paper provides the first whole-genome comparison of two diatoms and identifies the presence in the genome of numerous bacterial genes.

    Article  ADS  CAS  Google Scholar 

  7. Kooistra, W. H. C. F., Gersonde, R., Medlin, L. K. & Mann, D. G. in Evolution of Primary Producers in the Sea (eds Falkowski, P. G. & Knoll, A. H.) 207–249 (Elsevier, 2007).

    Book  Google Scholar 

  8. Morel, F. M. M. & Price, N. M. The biogeochemical cycles of trace elements in the oceans. Science 300, 944–947 (2003).

    Article  ADS  CAS  Google Scholar 

  9. Villareal, T. A. et al. Upward transport of oceanic nitrate by migrating diatom mats. Nature 397, 423–425 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Vardi, A. et al. A diatom gene regulating nitric-oxide signalling and susceptibility to diatom-derived aldehydes. Curr. Biol. 18, 895–899 (2008).

    Article  CAS  Google Scholar 

  11. Ianora, A. et al. Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature 429, 403–407 (2004).

    Article  ADS  CAS  Google Scholar 

  12. Parker, M. S., Mock, T. & Armbrust, E. V. Genomic insights into marine microalgae. Annu. Rev. Genet. 42, 619–645 (2008).

    Article  CAS  Google Scholar 

  13. Yoon, H. S., Hackett, J. D., Ciniglia, C., Pinto, G. & Bhattachrya, D. A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 21, 809–818 (2004).

    Article  CAS  Google Scholar 

  14. Reyes-Prieto, A., Hackett, J. D., Soares, M. B., Bonaldo, M. F. & Bhattacharya, D. Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. Curr. Biol. 16, 2320–2325 (2006).

    Article  CAS  Google Scholar 

  15. Huang, J. & Gogarten, J. P. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol. 8, R99 (2007).

    Article  Google Scholar 

  16. Becker, B., Hoef-Emden, K. & Melkonian, M. Chlamydial genes shed light on the evolution of phototrophic eukaryotes. BMC Evol. Biol. 8, 203 (2008).

    Article  Google Scholar 

  17. Allen, A. E., Vardi, A. & Bowler, C. An ecological and evolutionary context for integrated nitrogen metabolism and related signaling pathways in marine diatoms. Curr. Opin. Plant Biol. 9, 264–273 (2006).

    Article  CAS  Google Scholar 

  18. Montsant, A. et al. Identification and comparative genomic analysis of signaling and regulatory components in the diatom Thalassiosira pseudonana . J. Phycol. 43, 585–604 (2007).

    Article  Google Scholar 

  19. Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438, 90–93 (2005).

    Article  ADS  CAS  Google Scholar 

  20. Droop, M. R. Vitamins, phytoplankton and bacteria: symbiosis or scavenging. J. Plankton Res. 29, 107–113 (2007).

    Article  CAS  Google Scholar 

  21. Reimann, L., Steward, G. F. & Azam, F. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl. Environ. Microbiol. 66, 578–587 (2000).

    Article  Google Scholar 

  22. Lau, W. W. Y., Keil, R. G. & Armbrust, E. V. Succession and diel transcriptional response of the glycolate-utilizing component of the bacterial community during a spring phytoplankton bloom. Appl. Environ. Microbiol. 73, 2440–2450 (2007).

    Article  CAS  Google Scholar 

  23. Kaczmarska, I. et al. Diversity and distribution of epibiotic bacteria on Pseudo-nitzschia multiseries (Bacillariophyceae) in culture, and comparison with those on diatoms in native seawater. Harmful Algae 4, 725–741 (2005).

    Article  Google Scholar 

  24. Foster, R. A. & Zehr, J. P. Characterization of diatom–cyanobacteria symbioses on the basis of nifH, hetR and 16S rRNA sequences. Environ. Microbiol. 8, 1913–1925 (2006).

    Article  CAS  Google Scholar 

  25. Schmid, A.-M. M. Endobacteria in the diatom Pinnularia (Bacillariophyceae). I. 'Scattered ct-nucleoids' explained: DAPI–DNA complexes stem from exoplastidial bacteria boring into the chloroplasts. J. Phycol. 39, 122–138 (2003).

    Article  Google Scholar 

  26. Sorhannus, U. A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Mar. Micropaleontol. 65, 1–12 (2007).

    Article  ADS  Google Scholar 

  27. Sims, P. A., Mann, D. G. & Medlin, L. K. Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45, 361–402 (2006). This paper provides detailed information that couples geological data with diatom morphology and palaeological distributions.

    Article  Google Scholar 

  28. Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004).

    Article  ADS  CAS  Google Scholar 

  29. Katz, M. E. et al. Biological overprint of the geological carbon cycle. Mar. Geol. 217, 323–338 (2005).

    Article  ADS  CAS  Google Scholar 

  30. Falkowski, P. G. et al. The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 309, 2202–2204 (2005).

    Article  ADS  CAS  Google Scholar 

  31. Guidry, M. W., Arvidson, R. S. & MacKenzie, F. T. in Evolution of Primary Producers in the Sea (eds Falkowski, P. G. & Knoll, A. H.) 377–403 (Elsevier, 2007).

    Book  Google Scholar 

  32. Falkowski, P. G. & Oliver, M. J. Mix and max: how climate selects phytoplankton. Nature Rev. Microbiol. 5, 813–819 (2007).

    CAS  Google Scholar 

  33. Rabosky, D. L. & Sorhannus, U. Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature 457, 183–187 (2009).

    Article  ADS  CAS  Google Scholar 

  34. Zielinski, U. & Gersonde, R. Diatom distribution in Southern Ocean surface sediments (Atlantic sector): implications for paloeenvironmental reconstructions. Palaeogeogr. Palaeoclimat. Palaeoecol. 129, 213–250 (1997).

    Article  ADS  Google Scholar 

  35. Kroth, P. G. et al. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS ONE 3, e1426 (2008).

    Article  ADS  Google Scholar 

  36. Moore, J. K., Doney, S. C., Glover, D. M. & Fung, I. Iron cycling and nutrient-limitation patterns in surface waters of the world ocean. Deep-Sea Res. II 49, 463–507 (2002).

    Article  ADS  CAS  Google Scholar 

  37. Marchetti, A., Maldonado, M. T., Lane, E. S. & Harrison, P. J. Iron requirements of the pennate diatom Pseudo-nitzschia: comparison of oceanic (HNLC) and coastal species. Limnol. Oceanogr. 51, 2092–2101 (2006).

    Article  ADS  CAS  Google Scholar 

  38. Sunda, W. G., Swift, D. G. & Huntsman, S. A. Low iron requirement for growth in oceanic phytoplankton. Nature 351, 55–57 (1991).

    Article  ADS  CAS  Google Scholar 

  39. Strzepek, R. F. & Harrison, P. J. Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431, 689–692 (2004). This paper provides the first molecular-based description of photosynthetic differences between coastal and open-ocean diatoms.

    Article  ADS  CAS  Google Scholar 

  40. Peers, G. & Price, N. M. Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441, 341–344 (2006).

    Article  ADS  CAS  Google Scholar 

  41. Kustka, A. B., Allen, A. E. & Morel, F. M. M. Sequence analysis and transcriptional regulation of iron acquisition genes in two marine diatoms. J. Phycol. 43, 715–729 (2007).

    Article  CAS  Google Scholar 

  42. Allen, A. E. et al. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc. Natl Acad. Sci. USA 105, 10438–10443 (2008).

    Article  ADS  CAS  Google Scholar 

  43. Jickells, T. D. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).

    Article  ADS  CAS  Google Scholar 

  44. Marchetti, A. et al. Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature 457, 467–470 (2008). This was the first molecular description of an iron-storage protein in diatoms and discusses the potential selective advantages conveyed by this protein.

    Article  ADS  Google Scholar 

  45. Drum, R. W. & Gordon, R. Star Trek replicators and diatom nanotechnology. Trends Biotechnol. 21, 325–328 (2003).

    Article  CAS  Google Scholar 

  46. Tréguer, P. et al. The silica balance in the world ocean: a reestimate. Science 268, 375–379 (1995).

    Article  ADS  Google Scholar 

  47. Vrieling, E. G. et al. Salinity-dependent diatom biosilicification implies an important role of external ionic strength. Proc. Natl Acad. Sci. USA 104, 10441–10446 (2007).

    Article  ADS  CAS  Google Scholar 

  48. Bidle, K. D., Maganelli, M. & Azam, F. Regulation of oceanic silicon and carbon preservation by temperature control on bacteria. Science 298, 1980–1984 (2002).

    Article  ADS  CAS  Google Scholar 

  49. Kroger, N., Lorenz, S., Brunner, E. & Sumper, M. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298, 584–586 (2002). This paper describes the isolation of native silaffins from the cell wall and the function of these proteins during silica precipitation.

    Article  ADS  Google Scholar 

  50. Kroger, N., Deutzmann, R., Bergsdorf, C. & Sumper, M. Species-specific polyamines from diatoms control silica morphology. Proc. Natl Acad. Sci. USA 97, 14133–14138 (2000).

    Article  ADS  CAS  Google Scholar 

  51. Wenzel, S., Hett, R., Richthamer, P. & Sumper, M. Silacidins: highly acidic phosphopeptides from diatom shells assist in silica precipitation in vitro . Angew. Chem. Int. Edn Engl. 120, 1753–1756 (2008).

    Article  Google Scholar 

  52. Mock, T. et al. Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bioproceses. Proc. Natl Acad. Sci. USA 105, 1579–1584 (2008).

    Article  ADS  CAS  Google Scholar 

  53. Siegenthaler, U. et al. Stable carbon cycle–climate relationship during the late Pleistocene. Science 310, 1313–1317 (2005).

    Article  ADS  CAS  Google Scholar 

  54. Matsumoto, K. & Sarmiento, J. L. A corollary to the silicic acid leakage hypothesis. Paleoceanography 23, PA2203 (2008).

    Article  ADS  Google Scholar 

  55. Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315, 612–617 (2007).

    Article  ADS  CAS  Google Scholar 

  56. Bates, S. S. & Trainer, V. L. in Ecology of Harmful Algae (eds Graneli, E. & Turner, J. T.) Ch. 7 (Springer, 2006).

    Google Scholar 

  57. Goldstein, T. et al. Novel symptomatology and changing epidemiology of domoic acid toxicosis in California sea lions (Zalophus californianus): an increasing risk to marine mammal health. Proc. R. Soc. B 275, 267–276 (2008).

    Article  CAS  Google Scholar 

  58. de Baar, H. J. W. et al. Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. J. Geophys. Res. 110, C09S16 (2005).

    Article  Google Scholar 

  59. Marchetti, A. et al. Identification and assessment of domoic acid production in oceanic Pseudo-nitzschia (Bacillariophyceae) from iron-limited waters in the northeast subarctic Pacific. J. Phycol. 44, 650–661 (2008).

    Article  CAS  Google Scholar 

  60. McDougald, D., Rice, S. A. & Kjelleberg, S. Bacterial quorum sensing and interference by naturally occurring biomimics. Anal. Bioanal. Chem. 387, 445–453 (2007).

    Article  CAS  Google Scholar 

  61. Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive 'acidified' water onto the continental shelf. Science 320, 1490–1492 (2008).

    Article  ADS  CAS  Google Scholar 

  62. McNeil, B. I. & Matear, R. J. Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2 . Proc. Natl Acad. Sci. USA 105, 18860–18864 (2008).

    Article  ADS  CAS  Google Scholar 

  63. Levitus, S., Antonov, J. I., Boyer, T. P. & Stephens, C. Warming of the world ocean. Science 287, 2225–2229 (2000).

    Article  ADS  CAS  Google Scholar 

  64. Toggweiler, J. R. & Russell, J. Ocean circulation in a warming climate. Nature 451, 286–288 (2008).

    Article  ADS  CAS  Google Scholar 

  65. Polovina, J. J., Howell, E. A. & Abecassis, M. Ocean's least productive waters are expanding. Geophys. Res. Lett. 35, L03618 (2008).

    Article  ADS  Google Scholar 

  66. Boning, C. W., Dispert, A., Visbeck, M., Rintoul, S. R. & Schwarzkopf, F. U. The response of the Antarctic Circumpolar Current to recent climate change. Nature Geosci. 1, 864–869 (2008).

    Article  ADS  Google Scholar 

  67. Jackson, J. B. C. Ecological extinction and evolution in the brave new ocean. Proc. Natl Acad. Sci. USA 105, 11458–11465 (2008).

    Article  ADS  CAS  Google Scholar 

  68. Cloern, J. E., Jassby, A. D., Thompson, J. K. & Hieb, K. A. A cold phase of the East Pacific triggers new phytoplankton blooms in San Francisco Bay. Proc. Natl Acad. Sci. USA 104, 18561–18565 (2007).

    Article  ADS  CAS  Google Scholar 

  69. Richardson, A. J. & Poloczanska, E. S. Under-resourced, under threat. Science 320, 1294–1295 (2008).

    Article  CAS  Google Scholar 

  70. Smetacek, V. & Cloern, J. E. On phytoplankton trends. Science 319, 1346–1348 (2008).

    Article  CAS  Google Scholar 

  71. Cermeno, P. et al. The role of nutricline depth in regulating the ocean carbon cycle. Proc. Natl Acad. Sci. USA 205, 20344–20349 (2008). This paper predicts phytoplankton community structure in oceans of the future and the resultant effects on the carbon cycle.

    Article  Google Scholar 

  72. Dore, J. E., Letelier, R. M., Church, M. J., Lukas, R. & Karl, D. M. Summer phytoplankton blooms in the oligotrophic North Pacific Subtropical Gyre: historical perspective and recent observations. Prog. Oceanogr. 76, 2–38 (2008).

    Article  ADS  Google Scholar 

  73. Sedwick, P. N., Sholkovitz, E. R. & Church, T. M. Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: evidence from the Sargasso Sea. Geochem. Geophys. Geosyst. 8, Q10Q06 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to members of my laboratory and to G. Rocap and S. Francis for discussion and edits of the manuscript. Support was provided by funding from the Gordon and Betty Moore Foundation Marine Microbiology Initiative, the US National Science Foundation and the National Institute of Environmental Health Sciences.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to the author (armbrust@ocean.washington.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armbrust, E. The life of diatoms in the world's oceans. Nature 459, 185–192 (2009). https://doi.org/10.1038/nature08057

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08057

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing