Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Carbon–heteroatom bond formation catalysed by organometallic complexes

Abstract

At one time the synthetic chemist's last resort, reactions catalysed by transition metals are now the preferred method for synthesizing many types of organic molecule. A recent success in this type of catalysis is the discovery of reactions that form bonds between carbon and heteroatoms (such as nitrogen, oxygen, sulphur, silicon and boron) via complexes of transition metals with amides, alkoxides, thiolates, silyl groups or boryl groups. The development of these catalytic processes has been supported by the discovery of new elementary reactions that occur at metal–heteroatom bonds and by the identification of factors that control these reactions. Together, these findings have led to new synthetic processes that are in daily use and have formed a foundation for the development of processes that are likely to be central to synthetic chemistry in the future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Catalytic C–C and C–H bond-forming processes.
Figure 2: Mechanisms of three common catalytic organometallic processes.
Figure 3: Recently discovered organometallic reactions of transition-M–heteroatom bonds.
Figure 4: Aspects of palladium-catalysed amination of aryl halides and related reactions.
Figure 5: Organometallic oxidative C–O and C–halogen bond-forming functionalization of C–H bonds.
Figure 6: Summary of the functionalization of alkanes with M–B intermediates.
Figure 7: Organometallic oxidation and oxidative amination of olefins.
Figure 8: Two mechanisms for catalytic hydroaminations of C–C multiple bonds through M–amido intermediates.
Figure 9: Data and basis for relative rates of olefin insertion into alkyl, amide and alkoxo complexes.

Similar content being viewed by others

References

  1. Muci, A. R. & Buchwald, S. L. Practical palladium catalysts for C–N and C–O bond formation. Top. Curr. Chem. 219, 131–209 (2002). This paper reviews the primary literature on cross-coupling to form C–N and C-O bonds.

    Article  CAS  Google Scholar 

  2. Hartwig, J. F. in Handbook of Organopalladium Chemistry for Organic Synthesis Vol. 1 (ed. Negishi, E. I.) 1051–1096 (Wiley-Interscience, 2002).

    Book  Google Scholar 

  3. Hartwig, J. F. in Handbook of Organopalladium Chemistry for Organic Synthesis Vol. 1 (ed. Negishi, E. I.) 1097–1106 (Wiley-Interscience, 2002).

    Book  Google Scholar 

  4. Dick, A. R. & Sanford, M. S. Transition metal catalyzed oxidative functionalization of carbon–hydrogen bonds. Tetrahedron 62, 2439–2463 (2006). This paper reviews various modern approaches to C–H bond functionalization to form C–heteroatom bonds.

    Article  CAS  Google Scholar 

  5. Hull, K. L., Anani, W. Q. & Sanford, M. S. Palladium-catalyzed fluorination of carbon–hydrogen bonds. J. Am. Chem. Soc. 128, 7134–7135 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Giri, R., Chen, X. & Yu, J. Q. Palladium-catalyzed asymmetric iodination of unactivated C–H bonds under mild conditions. Angew. Chem. Int. Edn Engl. 44, 2112–2115 (2005).

    Article  CAS  Google Scholar 

  7. Chen, H., Schlecht, S., Semple, T. C. & Hartwig, J. F. Thermal, catalytic, regiospecific functionalization of alkanes. Science 287, 1995–1997 (2000). This paper reports the only catalytic process to functionalize terminal alkyl C-H bonds selectively.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Jira, R. in Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Two Volumes (eds Cornils, B. & Herrmann, W. A.) 386–405 (Wiley-VCH, 2002).

    Book  Google Scholar 

  9. Liu, G. & Stahl, S. S. Two-faced reactivity of alkenes: cis- versus trans-aminopalladation in aerobic Pd-catalyzed intramolecular aza-Wacker reactions. J. Am. Chem. Soc. 129, 6328–6335 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Muller, T. E. in Encyclopedia of Catalysis Vol. 3 (ed. Horváth, I. T.) 518–541 (Wiley-Interscience, 2003).

    Google Scholar 

  11. King, A. O. & Yasuda, N. Palladium-catalyzed cross-coupling reactions in the synthesis of pharamaceuticals. Topics Organomet. Chem. 6, 205–245 (2004).

    Article  CAS  Google Scholar 

  12. de Vries, J. G. The Heck reaction in the production of fine chemicals. Can. J. Chem. 79, 1086–1092 (2001).

    Article  CAS  Google Scholar 

  13. Aizawa, M., Yamada, T., Shinohara, H., Akagi, K. & Shirakawa, H. Electrochemical fabrication of a polypyrrole-polythiophene p-n-junction diode. J. Chem. Soc., Chem. Commun. 17, 1315–1317 (1986).

    Article  Google Scholar 

  14. Jen, K.-Y., Miller, G. G. & Elsenbaumer, R. L. Highly conducting, soluble, and environmentally-stable poly(3-alkylthiophenes). J. Chem. Soc., Chem. Commun. 17, 1346–1347 (1986).

    Article  Google Scholar 

  15. Sato, M.-A., Tanaka, S. & Kaeriyama, K. Soluble conducting polythiophenes. J. Chem. Soc., Chem. Commun. 11, 873–874 (1986).

    Article  Google Scholar 

  16. McQuade, D. T., Pullen, A. E. & Swager, T. M. Conjugated polymer-based chemical sensors. Chemical Reviews 100, 2537–2574 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Hasenhuettl, G. L. in Kirk-Othmer Encyclopedia of Chemical Technology, doi:10.1002/0471238961.0601201908011905.a01.pub2 (Wiley, 2005).

    Google Scholar 

  18. Blaser, H. U. & Schmidt, E. Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions. (Wiley-VCH, 2004).

    Google Scholar 

  19. Hoveyda, A. H. & Zhugralin, A. R. The remarkable metal-catalysed olefin metathesis reaction. Nature 450, 243–251 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Kakiuchi, F. & Chatani, N. Catalytic methods for C–H bond functionalization: application in organic synthesis. Adv. Synth. Catal. 345, 1077–1101 (2003).

    Article  CAS  Google Scholar 

  21. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Goldman, A. S. et al. Catalytic alkane metathesis by tandem alkane dehydrogenation olefin metathesis. Science 312, 257–261 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Crabtree, R. H. The Organometallic Chemistry of the Transition Metals 4th edn (Wiley, 2005).

    Book  Google Scholar 

  24. Collman, J. P., Hegedus, L. S., Norton, J. R. & Finke, R. G. Principles and Applications of Organotransition Metal Chemistry (University Science Books, 1987).

    Google Scholar 

  25. Ojima, I., Li, Z. & Zhu, J. in The Chemistry Of Organic Silicon Compounds Vol. 2 (eds Rappoport, Z. & Apeloig, Y.) 1687–1792 (Wiley, 1998).

    Book  Google Scholar 

  26. Hartwig, J. F. Carbon–heteroatom bond-forming reductive elimination of amines, ethers, and sulfides. Acc. Chem. Res. 31, 852–860 (1998).

    Article  CAS  Google Scholar 

  27. Hartwig, J. F. Electronic effects on reductive elimination to form carbon–carbon and carbon–heteroatom bonds from palladium(ii) complexes. Inorg. Chem. 46, 1936–1947 (2007). This paper reviews how the properties of a heteroatom affect the rates of reductive elimination to form C–heteroatom bonds.

    Article  CAS  PubMed  Google Scholar 

  28. Hillhouse, G. L. & Bercaw, J. E. Reactions of water and ammonia with bis(pentamethyl-cyclopentadienyl) complexes of zirconium and hafnium. J. Am. Chem. Soc. 106, 5472–5478 (1984).

    Article  CAS  Google Scholar 

  29. Zhao, J., Goldman, A. S. & Hartwig, J. F. Oxidative addition of ammonia to form a stable monomeric amido hydride complex. Science 307, 1080–1082 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Casalnuovo, A. L., Calabrese, J. C. & Milstein, D. Rational design in homogeneous catalysis. Ir(i)-catalyzed addition of aniline to norbornylene via N–H activation. J. Am. Chem. Soc. 110, 6738–6744 (1988).

    Article  CAS  Google Scholar 

  31. Zhao, P. J., Krug, C. & Hartwig, J. F. Transfer of amido groups from isolated rhodium(i) amides to alkenes and vinylarenes. J. Am. Chem. Soc. 127, 12066–12073 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Zhao, P., Incarvito, C. D. & Hartwig, J. F. Carbon–oxygen bond formation between a terminal alkoxo ligand and a coordinated olefin. Evidence for olefin insertion into a rhodium alkoxide. J. Am. Chem. Soc. 128, 9642–9643 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Polse, J. L., Andersen, R. A. & Bergmann, R. G. Reactivity of a terminal Ti(iv) imido complex toward alkenes and alkynes: cycloaddition vs C–H activation. J. Am. Chem. Soc. 120, 13405–13414 (1998).

    Article  CAS  Google Scholar 

  34. Fulton, J. R., Holland, A. W., Fox, D. J. & Bergman, R. G. Formation, reactivity, and properties of nondative late transition metal–oxygen and –nitrogen bonds. Acc. Chem. Res. 35, 44–56 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bryndza, H. & Tam, W. Monomeric metal hydroxides, alkoxides, and amides of the late transition metals: synthesis, reactions, and thermochemistry. Chem. Rev. 88, 1163–1188 (1988).

    Article  CAS  Google Scholar 

  36. Hartwig, J. F. in Modern Arene Chemistry (ed. Astruc, C.) 107–168 (Wiley-VCH, 2002).

    Book  Google Scholar 

  37. Boger, D. L. & Panek, J. S. Palladium (0) mediated β-carboline synthesis: preparation of the CDE ring system of lavendamycin. Tetrahedron Lett. 25, 3175–3178 (1984).

    Article  CAS  Google Scholar 

  38. Kosugi, M., Kameyama, M. & Migita, T. Palladium-catalyzed aromatic amination of aryl bromides with N,N-di-ethylamino-tributyltin. Chem. Lett. 12, 927–928 (1983).

    Article  Google Scholar 

  39. Guram, A. S., Rennels, R. A. & Buchwald, S. L. A simple catalytic method for the conversion of aryl bromides to arylamines. Angew. Chem. Int. Edn Engl. 34, 1348–1350 (1995).

    Article  CAS  Google Scholar 

  40. Louie, J. & Hartwig, J. F. Palladium-catalyzed synthesis of arylamines from aryl halides. mechanistic studies lead to coupling in the absence of tin reagents. Tetrahedron Lett. 36, 3609–3612 (1995).

    Article  CAS  Google Scholar 

  41. Wolfe, J. P., Wagaw, S. & Buchwald, S. L. An improved catalyst system for aromatic carbon–nitrogen bond formation: the possible involvement of bis (phosphine) palladium complexes as key intermediates. J. Am. Chem. Soc. 118, 7215–7216 (1996).

    Article  CAS  Google Scholar 

  42. Driver, M. S. & Hartwig, J. F. A second generation catalyst for aryl halide amination: mixed secondary amines from aryl halides and primary amines catalyzed by (DPPF)PdCl2 . J. Am. Chem. Soc. 118, 7217–7218 (1996).

    Article  CAS  Google Scholar 

  43. Nishiyama, M., Yamamoto, T. & Koie, Y. Synthesis of N-arylpiperazines from aryl halides and piperazine under a palladium tri-tert-butylphosphine catalyst. Tetrahedron Lett. 39, 617–620 (1998).

    Article  CAS  Google Scholar 

  44. Hartwig, J. F., Kawatsura, M., Hauck, S. I., Shaughnessy, K. H. & Alcazar-Roman, L. M. Room-temperature palladium-catalyzed amination of aryl bromides and chlorides and extended scope of aromatic C–N bond formation with a commercial ligand. J. Org. Chem. 64, 5575–5580 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Stambuli, J. P., Kuwano, R. & Hartwig, J. F. Unparalleled rates for the activation of aryl chlorides. Coupling with amines and boronic acids in minutes at room temperature. Angew. Chem. Int. Edn Engl. 41, 4746–4747 (2002).

    Article  CAS  Google Scholar 

  46. Zapf, A. et al. Practical synthesis of new and highly efficient ligands for the Suzuki reaction of aryl chlorides. Chem. Commun. 10, 38–39 (2004).

    Article  Google Scholar 

  47. Singer, R. A., Dore, M. L., Sieser, J. E. & Berliner, M. A. Development of nonproprietary phosphine ligands for the Pd-catalyzed amination reaction. Tetrahedron Lett. 47, 3727–3731 (2006).

    Article  CAS  Google Scholar 

  48. Kataoka, N., Shelby, Q., Stambuli, J. P. & Hartwig, J. F. Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed C–C, C–N and C–O bond-forming cross-couplings. J. Org. Chem. 67, 5553–5566 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Shen, Q., Shekhar, S., Stambuli, J. P. & Hartwig, J. F. Highly reactive, general, and long-lived catalysts for coupling heteroaryl and aryl chlorides with primary nitrogen nucleophiles. Angew. Chem. Int. Edn Engl. 44, 1371–1375 (2004).

    Article  Google Scholar 

  50. Shen, Q. & Hartwig, J. F. Palladium-catalyzed coupling of ammonia and lithium amide. J. Am. Chem. Soc. 128, 10028–10029 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Driver, M. S. & Hartwig, J. F. Carbon–nitrogen bond-forming reductive elimination of arylamines from Pd(ii). J. Am. Chem. Soc. 119, 8232–8245 (1997).

    Article  CAS  Google Scholar 

  52. Fujita, K. I. et al. Organometallic chemistry from amidate complexes. Reductive elimination of N-aryl amidates from palladium(ii). J. Am. Chem. Soc. 128, 9044–9045 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Mann, G., Incarvito, C., Rheingold, A. L. & Hartwig, J. F. Palladium-catalyzed C–O coupling involving unactivated aryl halides. Sterically induced reductive elimination to form the C–O bond in diaryl ethers. J. Am. Chem. Soc. 121, 3224–3225 (1999).

    Article  CAS  Google Scholar 

  54. Stambuli, J. R., Weng, Z. Q., Incarvito, C. D. & Hartwig, J. F. Reductive elimination of ether from T-shaped, monomeric arylpalladium alkoxides. Angew. Chem. Int. Edn Engl. 46, 7674–7677 (2007).

    Article  CAS  Google Scholar 

  55. Mann, G., Barañano, D., Hartwig, J. F., Rheingold, A. L. & Guzei, I. A. Carbon–sulfur bond-forming reductive elimination involving sp-, sp2, and sp3-hybridized carbon. Mechanism, steric effects, and electronic effects on sulfide formation. J. Am. Chem. Soc. 120, 9205–9219 (1998).

    Article  CAS  Google Scholar 

  56. Holland, P. L., Andersen, R. A. & Bergman, R. G. Application of the E-C approach to understanding the bond energies thermodynamics of late-metal amido, aryloxo and alkoxo complexes: an alternative to p π/d π repulsion. Comments Inorg. Chem. 21, 115–129 (1999).

    Article  CAS  Google Scholar 

  57. Culkin, D. A. & Hartwig, J. F. Carbon–carbon bond-forming reductive elimination from arylpalladium complexes containing functionalized alkyl groups. Influence of ligand steric and electronic properties on structure, stability, and reactivity. Organometallics 23, 3398–3416 (2004).

    Article  CAS  Google Scholar 

  58. Huheey, J. E., Keiter, E. A. & Keiter, R. L. Inorganic Chemistry 4th edn (Harper Collins, 1993).

    Google Scholar 

  59. Williams, B. S. & Goldberg, K. I. Studies of reductive elimination reactions to form carbon–oxygen bonds from Pt(iv) complexes. J. Am. Chem. Soc. 123, 2576–2587 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Pawlikowski, A. V., Getty, A. D. & Goldberg, K. I. Alkyl carbon–nitrogen reductive elimination from platinum(iv)–sulfonamide complexes. J. Am. Chem. Soc. 129, 10382–10393 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Dick, A. R., Kampf, J. W. & Sanford, M. S. Unusually stable palladium(iv) complexes: detailed mechanistic investigation of C–O bond-forming reductive elimination. J. Am. Chem. Soc. 127, 12790–12791 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Bistri, O., Correa, A. & Bolm, C. Iron-catalyzed C–O cross-couplings of phenols with aryl iodides. Angew. Chem. Int. Edn Engl. 47, 586–588 (2008).

    Article  CAS  Google Scholar 

  63. Correa, A. & Bolm, C. Iron-catalyzed N-arylation of nitrogen nucleophiles. Angew. Chem. Int. Edn Engl. 46, 8862–8865 (2007).

    Article  CAS  Google Scholar 

  64. Beletskaya, I. P. & Cheprakov, A. V. Copper in cross-coupling reactions — the post-Ullmann chemistry. Coord. Chem. Rev. 248, 2337–2364 (2004).

    Article  CAS  Google Scholar 

  65. Shilov, A. E. & Shul'pin, G. B. Activation of C–H bonds by metal complexes. Chem. Rev. 97, 2879–2932 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Periana, R. A. et al. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 280, 560–564 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Sen, A. Catalytic functionalization of carbon–hydrogen and carbon–carbon bonds in protic media. Acc. Chem. Res. 31, 550–557 (1998).

    Article  CAS  Google Scholar 

  68. Stahl, S. S., Labinger, J. A. & Bercaw, J. E. Homogeneous oxidation of alkanes by electrophilic late transition metals. Angew. Chem. Int. Edn Engl. 37, 2181–2192 (1998).

    Article  CAS  Google Scholar 

  69. Groves, J. T. High-valent iron in chemical and biological oxidations. J. Inorg. Biochem. 100, 434–447 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Wenzel, T. T. & Bergman, R. G. Inter- and intramolecular insertion of rhenium into carbon–hydrogen bonds. J. Am. Chem. Soc. 108, 4856–4867 (1986).

    Article  CAS  Google Scholar 

  71. Jones, W. D. & Feher, F. J. The mechanism and thermodynamics of alkane and arene carbon–hydrogen bond activation in (C5Me5)Rh(PMe3)(R)H. J. Am. Chem. Soc. 106, 1650–1663 (1985).

    Article  Google Scholar 

  72. Arndtsen, B. A., Bergman, R. G., Mobley, T. A. & Peterson, T. H. Selective intermolecular carbon–hydrogen bond activation by synthetic metal complexes in homogeneous solution. Acc. Chem. Res. 28, 154 (1995).

    Article  CAS  Google Scholar 

  73. Whitfield, S. R. & Sanford, M. S. Reactivity of Pd(ii) complexes with electrophilic chlorinating reagents: isolation of Pd(iv) products and observation of C–Cl bond-forming reductive elimination. J. Am. Chem. Soc. 129, 15142–15143 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Giri, R., Chen, X. & Yu, J. Q. Palladium-catalyzed asymmetric iodination of unactivated C–H bonds under mild conditions. Angew. Chem. Int. Edn Engl. 44, 2112–2115 (2005).

    Article  CAS  Google Scholar 

  75. Desai, L. V., Hull, K. L. & Sanford, M. S. Palladium-catalyzed oxygenation of unactivated sp3 C–H bonds. J. Am. Chem. Soc. 126, 9542–9543 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Davies, D. L., Donald, S. M. A. & Macgregor, S. A. Computational study of the mechanism of cyclometalation by palladium acetate. J. Am. Chem. Soc. 127, 13754–13755 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Ishiyama, T. & Miyaura, N. Transition metal-catalyzed borylation of alkanes and arenes via C–H activation. J. Organomet. Chem. 680, 3–11 (2003).

    Article  CAS  Google Scholar 

  78. Hartwig, J. F. et al. Rhodium–boryl complexes in the catalytic, terminal functionalization of alkanes. J. Am. Chem. Soc. 127, 2538–2552 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Henry, P. M. in Handbook of Organopalladium Chemistry for Organic Synthesis (ed. Negishi, E. I.) (Wiley-Interscience, 2002).

    Google Scholar 

  80. Francis, J. W. & Henry, P. M. Palladium(ii)-catalyzed exchange and isomerization reactions. 14. Kinetics and stereochemistry of the isomerization and water exchange of 2-(methyl-d 3)-4-methyl-1,1,1,5,5,5-hexafluoro-3-penten-2-ol in aqueous solution catalyzed by PdCl4 2–: two new mechanistic probes for catalytic chemistry. Organometallics 10, 3498–3503 (1991).

    Article  CAS  Google Scholar 

  81. Francis, J. W. & Henry, P. M. Palladium(ii)-catalyzed exchange and isomerization reactions. 15. Kinetics and stereochemistry of the isomerization and water exchange of 2-(methyl-d 3)-4-methyl-1,1,1,5,5,5-hexafluoro-3-penten-2-ol in aqueous solution catalyzed by PdCl4 2– at high chloride concentrations. Organometallics 11, 2832–2836 (1992).

    Article  CAS  Google Scholar 

  82. Hamed, O., Thompson, C. & Henry, P. M. Stereochemistry of the Wacker reaction: modes of addition of hydroxide, methoxide, and phenyl at high and low Cl. A study using chirality transfer. J. Org. Chem. 62, 7082–7083 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Hayashi, T., Yamasaki, K., Mimura, M. & Uozumi, Y. Deuterium-labeling studies establishing stereochemistry at the oxypalladation step in Wacker-type oxidative cyclization of an O-allylphenol. J. Am. Chem. Soc. 126, 3036–3037 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Trend, R. M., Ramtohul, Y. K. & Stoltz, B. M. Oxidative cyclizations in a nonpolar solvent using molecular oxygen and studies on the stereochemistry of oxypalladation. J. Am. Chem. Soc. 127, 17778–17788 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hong, S. & Marks, T. J. Organolanthanide-catalyzed hydroamination. Acc. Chem. Res. 37, 673–686 (2004). This paper reviews the development of some of the most active catalysts for alkene hydroamination, which function by insertions of alkenes into M–amide bonds.

    Article  CAS  PubMed  Google Scholar 

  86. Amin, S. B. & Marks, T. J. Organolanthanide-catalyzed synthesis of amine-capped polyethylenes. J. Am. Chem. Soc. 129, 10102–10103 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Roesky, P. W. & Muller, T. E. Enantioselective catalytic hydroamination of alkenes. Angew. Chem. Int. Edn Engl. 42, 2708–2710 (2003).

    Article  CAS  Google Scholar 

  88. Hultzsch, K. C. Transition metal-catalyzed asymmetric hydroamination of alkenes (AHA). Adv. Synth. Catal. 347, 367–391 (2005).

    Article  CAS  Google Scholar 

  89. Kim, J. Y. & Livinghouse, T. Enantioselective intramolecular alkene hydroaminations catalyzed by yttrium complexes of axially chiral bis(thiolate) ligands. Org. Lett. 7, 1737–1739 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Gagné, M. R. & Marks, T. J. Organolanthanide-catalyzed hydroamination. Facile regiospecific cyclization of unprotected amino olefins. J. Am. Chem. Soc. 111, 4108–4109 (1989).

    Article  Google Scholar 

  91. Gagne, M. R., Stern, C. L. & Marks, T. J. Organolanthanide-catalyzed hydroamination — a kinetic, mechanistic, and diastereoselectivity study of the cyclization of N-unprotected amino olefins. J. Am. Chem. Soc. 114, 275–294 (1992).

    Article  CAS  Google Scholar 

  92. Walsh, P. J., Baranger, A. M. & Bergman, R. G. Stoichiometric and catalytic hydroamination of alkynes and allene by zirconium bisamides Cp2Zr(NHR)2 . J. Am. Chem. Soc. 114, 1708–1719 (1992).

    Article  CAS  Google Scholar 

  93. Wood, M. C., Leitch, D. C., Yeung, C. S., Kozak, J. A. & Schafer, L. L. Chiral neutral zirconium amidate complexes for the asymmetric hydroamination of alkenes. Angew. Chem. Int. Edn Engl. 46, 354–358 (2007).

    Article  CAS  Google Scholar 

  94. Gott, A. L., Clarke, A. J., Clarkson, G. J. & Scott, P. Catalytic alkene cyclohydroamination via an imido mechanism. Chem. Commun. 12, 1422–1424 (2008).

    Article  Google Scholar 

  95. Jeske, G. et al. Highly reactive organolanthanides — systematic routes to and olefin chemistry of early and late bis(pentamethylcyclopentadienyl) 4f hydrocarbyl and hydride complexes. J. Am. Chem. Soc. 107, 8091–8103 (1985).

    Article  CAS  Google Scholar 

  96. Ittel, S. D., Johnson, L. K. & Brookhart, M. Late-metal catalysts for ethylene homo- and copolymerization. Chem. Rev. 100, 1169–1203 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Mecking, S. Olefin polymerization by late transition metal complexes — a root of Ziegler catalysts gains new ground. Angew. Chem. Int. Edn Engl. 40, 534–540 (2001).

    Article  CAS  Google Scholar 

  98. Wolfe, J. P. Palladium-catalyzed carboetherification and carboamination reactions of γ-hydroxy- and γ-aminoalkenes for the synthesis of tetrahydrofurans and pyrrolidines. Eur. J. Org. Chem. 4, 571–582 (2007).

    Article  CAS  Google Scholar 

  99. Nakhla, J. S., Kampf, J. W. & Wolfe, J. P. Intramolecular Pd-catalyzed carboetherification and carboamination. Influence of catalyst structure on reaction mechanism and product stereochemistry. J. Am. Chem. Soc. 128, 2893–2901 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Corey, E. J. & Cheng, X.-M. The Logic of Chemical Synthesis (Wiley-Interscience, 1995).

    Google Scholar 

Download references

Acknowledgements

I thank the National Institutes of Health, the US Department of Energy and the National Science Foundation for funding my research related to the catalytic formation of carbon–heteroatom bonds. I also thank my co-workers who helped to formulate the concepts included in the Review, and E. Alexanian for suggestions and thorough editing of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to the author (jhartwig@uiuc.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartwig, J. Carbon–heteroatom bond formation catalysed by organometallic complexes. Nature 455, 314–322 (2008). https://doi.org/10.1038/nature07369

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07369

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing