Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis

Abstract

Genomic studies of natural variation in model organisms provide a bridge between molecular analyses of gene function and evolutionary investigations of adaptation and natural selection. In the model plant species Arabidopsis thaliana, recent studies of natural variation have led to the identification of genes underlying ecologically important complex traits, and provided new insights about the processes of genome evolution, geographic population structure, and the selective mechanisms shaping complex trait variation in natural populations. These advances illustrate the potential for a new synthesis to elucidate mechanisms for the adaptive evolution of complex traits from nucleotide sequences to real-world environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Arabidopsis habitats.

Similar content being viewed by others

References

  1. Alonso-Blanco, C., Mendez-Vigo, B. & Koornneef, M. From phenotypic to molecular polymorphisms involved in naturally occurring variation of plant development. Int. J. Dev. Biol. 49, 717–732 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. Hoffmann, M. H. Biogeography of Arabidopsis thaliana (L.) Heynh. (Brassicaceae). J. Biogeogr. 29, 125–134 (2002)

    Article  Google Scholar 

  3. Nordborg, M. et al. The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol. 3, e196 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schmid, K. J., Ramos-Onsins, S., Ringys-Beckstein, H., Weisshaar, B. & Mitchell-Olds, T. A multilocus sequence survey in Arabidopsis thaliana reveals a genome-wide departure from a neutral model of DNA sequence polymorphism. Genetics 169, 1601–1615 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wright, S. I. & Gaut, B. S. Molecular population genetics and the search for adaptive evolution in plants. Mol. Biol. Evol. 22, 506–519 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. Ometto, L., Glinka, S., De Lorenzo, D. & Stephan, W. Inferring the effects of demography and selection on Drosophila melanogaster populations from a chromosome-wide scan of DNA variation. Mol. Biol. Evol. 22, 2119–2130 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. Akey, J. M. et al. Population history and natural selection shape patterns of genetic variation in 132 genes. PLoS Biol. 2, e286 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Abbott, R. J. & Gomes, M. F. Population genetic structure and outcrossing rate of Arabidopsis thaliana (L.) Heynh. Heredity 62, 411–418 (1989)

    Article  Google Scholar 

  9. Bustamante, C. D. et al. The cost of inbreeding in Arabidopsis. Nature 416, 531–534 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Shimizu, K. K. et al. Darwinian selection on a selfing locus. Science 306, 2081–2084 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Cork, J. M. & Purugganan, M. D. High-diversity genes in the Arabidopsis genome. Genetics 170, 1897–1911 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kroymann, J., Donnerhacke, S., Schnabelrauch, D. & Mitchell-Olds, T. Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. Proc. Natl Acad. Sci. USA 100, 14587–14592 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tian, D., Araki, H., Stahl, E., Bergelson, J. & Kreitman, M. Signature of balancing selection in Arabidopsis. Proc. Natl Acad. Sci. USA 99, 11525–11530 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Turelli, M. & Barton, N. H. Polygenic variation maintained by balancing selection: pleiotropy, sex-dependent allelic effects and G × E interactions. Genetics 166, 1053–1079 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schmid, K. et al. Evidence for a large-scale population structure of Arabidopsis thaliana from genome-wide single nucleotide polymorphism markers. Theor. Appl. Genet. 112, 1104–1114 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. Jorgensen, S. & Mauricio, R. Neutral genetic variation among wild North American populations of the weedy plant Arabidopsis thaliana is not geographically structured. Mol. Ecol. 13, 3403–3413 (2004)

    Article  CAS  PubMed  Google Scholar 

  17. Bakker, E. G. et al. Distribution of genetic variation within and among local populations of Arabidopsis thaliana over its species range. Mol. Ecol. 15, 1405–1418 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. Le Corre, V. Variation at two flowering time genes within and among populations of Arabidopsis thaliana: comparison with markers and traits. Mol. Ecol. 14, 4181–4192 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. Stenoien, H. K., Fenster, C. B., Tonteri, A. & Savolainen, O. Genetic variability in natural populations of Arabidopsis thaliana in northern Europe. Mol. Ecol. 14, 137–148 (2005)

    Article  CAS  PubMed  Google Scholar 

  20. Koornneef, M., Alonso-Blanco, C. & Vreugdenhil, D. Naturally occurring genetic variation in Arabidopsis thaliana. Annu. Rev. Plant Biol. 55, 141–172 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. Bouche, N. & Bouchez, D. Arabidopsis gene knockout: phenotypes wanted. Curr. Opin. Plant Biol. 4, 111–117 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. Schmid, M. et al. A gene expression map of Arabidopsis thaliana development. Nature Genet. 37, 501–506 (2005)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  23. Lempe, J. et al. Diversity of flowering responses in wild Arabidopsis thaliana strains. PLoS Genetics 1, e6 (2005)

    Article  PubMed Central  Google Scholar 

  24. Mackay, T. F. C. The genetic architecture of quantitative traits: lessons from Drosophila. Curr. Opin. Genet. Dev. 14, 253–257 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. Kroymann, J. & Mitchell-Olds, T. Epistasis and balanced polymorphism influencing complex trait variation. Nature 435, 95–98 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Fishman, L., Kelly, A. & Willis, J. Minor quantitative trait loci underlie floral traits associated with mating system divergence in Mimulus. Evolution 56, 2138–2155 (2002)

    Article  PubMed  Google Scholar 

  27. Gachon, C. M. M., Langlois-Meurinne, M., Henry, Y. & Saindrenan, P. Transcriptional co-regulation of secondary metabolism enzymes in Arabidopsis: functional and evolutionary implications. Plant Mol. Biol. 58, 229–245 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Kliebenstein, D. J. et al. Genomic survey of gene expression diversity in Arabidopsis thaliana. Genetics 172, 1179–1189 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vuylsteke, M., van Eeuwijk, F., Van Hummelen, P., Kuiper, M. & Zabeau, M. Genetic analysis of variation in gene expression in Arabidopsis thaliana. Genetics 171, 1267–1275 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. DeCook, R., Lall, S., Nettleton, D. & Howell, S. H. Genetic regulation of gene expression during shoot development in Arabidopsis. Genetics 172, 1155–1164 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de Meaux, J., Goebel, U., Pop, A. & Mitchell-Olds, T. Allele-specific assay reveals functional variation in the Chalcone Synthase promoter of Arabidopsis thaliana that is compatible with neutral evolution. Plant Cell 17, 676–690 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gibson, G. & Weir, B. The quantitative genetics of transcription. Trends Genet. 21, 616–623 (2005)

    Article  CAS  PubMed  Google Scholar 

  33. Ungerer, M. C., Halldorsdottir, S. S., Purugganan, M. D. & Mackay, T. F. C. Genotype–environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana. Genetics 165, 353–365 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Juenger, T. E., Sen, S., Stowe, K. A. & Simms, E. L. Epistasis and genotype–environment interaction for quantitative trait loci affecting flowering time in Arabidopsis thaliana. Genetica 123, 87–105 (2005)

    Article  CAS  PubMed  Google Scholar 

  35. Dilda, C. L. & Mackay, T. F. C. The genetic architecture of Drosophila sensory bristle number. Genetics 162, 1655–1674 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Weinreich, D., Watson, R. & Chao, L. Sign epistasis and genetic constraint on evolutionary trajectories. Evolution 59, 1165–1174 (2005)

    CAS  PubMed  Google Scholar 

  37. Syed, N. H. & Chen, Z. J. Molecular marker genotypes, heterozygosity and genetic interactions explain heterosis in Arabidopsis thaliana. Heredity 94, 295–304 (2004)

    Article  Google Scholar 

  38. Hausmann, N. J. et al. Quantitative trait loci affecting delta C-13 and response to differential water availability in Arabidopsis thaliana. Evolution 59, 81–96 (2005)

    CAS  PubMed  Google Scholar 

  39. Kearsey, M., Pooni, H. & Syed, N. Genetics of quantitative traits in Arabidopsis thaliana. Heredity 91, 456–464 (2003)

    Article  CAS  PubMed  Google Scholar 

  40. Malmberg, R. L., Held, S., Waits, A. & Mauricio, R. Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse. Genetics 171, 2013–2027 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Michaels, S. D. & Amasino, R. M. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13, 935–942 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Johanson, U. et al. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290, 344–347 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Weigel, D. & Nordborg, M. Natural variation in Arabidopsis. How do we find the causal genes? Plant Physiol. 138, 567–568 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. El-Assal, S. E.-D., Alonso-Blanco, C., Peeters, A. J. M., Raz, V. & Koornneef, M. A. QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nature Genet. 29, 435–440 (2001)

    Article  CAS  Google Scholar 

  45. Werner, J. D. et al. Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Proc. Natl Acad. Sci. USA 102, 2460–2465 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Puchta, H. & Hohn, B. Green light for gene targeting in plants. Proc. Natl Acad. Sci. USA 102, 11961–11962 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tian, D., Traw, M., Chen, J., Kreitman, M. & Bergelson, J. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423, 74–77 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Werner, J. D. et al. FRIGIDA-independent variation in flowering time of natural Arabidopsis thaliana accessions. Genetics 170, 1197–1207 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hoffmann, M. H. Evolution of the realized climatic niche in the genus Arabidopsis (Brassicaceae). Evolution 59, 1425–1436 (2005)

    PubMed  Google Scholar 

  50. Pigliucci, M. in The Arabidopsis Book (eds Somerville, C. R. & Meyerowitz, E. M.) (American Society of Plant Biologists, Rockville, Maryland, 2002) doi:10.1199/tab.0009 (2002)

    Google Scholar 

  51. Shindo, C. et al. Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol. 138, 1163–1173 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thompson, L. The spatiotemporal effects of nitrogen and litter on the population dynamics of Arabidopsis thaliana. J. Ecol. 82, 63–68 (1994)

    Article  Google Scholar 

  53. Simpson, G. G. & Dean, C. Arabidopsis, the Rosetta stone of flowering time? Science 296, 285–289 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Michaels, S. D., He, Y., Scortecci, K. C. & Amasino, R. M. Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc. Natl Acad. Sci. USA 100, 10102–10107 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maloof, J. N. et al. Natural variation in light sensitivity of Arabidopsis. Nature Genet. 29, 441–446 (2001)

    Article  CAS  PubMed  Google Scholar 

  56. Michael, T. P. et al. Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302, 1049–1053 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Stenoien, H. K., Fenster, C. B., Kuittinen, H. & Savolainen, O. Quantifying latitudinal clines to light responses in natural populations of Arabidopsis thaliana (Brassicaceae). Am. J. Bot. 89, 1604–1608 (2002)

    Article  PubMed  Google Scholar 

  58. Stinchcombe, J. R. et al. A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. Proc. Natl Acad. Sci. USA 101, 4712–4717 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004)

    Article  Google Scholar 

  60. Callahan, H. S. & Pigliucci, M. Shade-induced plasticity and its ecological significance in wild populations of Arabidopsis thaliana. Ecology 83, 1965–1980 (2002)

    Article  Google Scholar 

  61. Rausher, M. D. The measurement of selection on quantitative traits—biases due to environmental covariances between traits and fitness. Evolution 46, 616–626 (1992)

    Article  PubMed  Google Scholar 

  62. Wade, M. J. & Kalisz, S. The causes of natural selection. Evolution 44, 1947–1955 (1990)

    Article  PubMed  Google Scholar 

  63. Donohue, K. et al. The evolutionary ecology of seed germination of Arabidopsis thaliana: variable natural selection on germination timing. Evolution 59, 758–770 (2005)

    Article  PubMed  Google Scholar 

  64. Callahan, H. S., Dhanoolal, N. & Ungerer, M. C. Plasticity genes and plasticity costs: a new approach using an Arabidopsis recombinant inbred population. New Phytol. 166, 129–139 (2005)

    Article  CAS  PubMed  Google Scholar 

  65. Weinig, C. et al. Heterogeneous selection at specific loci in natural environments in Arabidopsis thaliana. Genetics 165, 321–329 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Verhoeven, K. J. F., Vanhala, T. K., Biere, A., Nevo, E. & Van Damme, J. M. M. The genetic basis of adaptive population differentiation: a quantitative trait locus analysis of fitness traits in two wild barley populations from contrasting habitats. Evolution 58, 270–283 (2004)

    Article  PubMed  Google Scholar 

  67. Mauricio, R. et al. Natural selection for polymorphism in the disease resistance gene Rps2 of Arabidopsis thaliana. Genetics 163, 735–746 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Shen, J., Araki, H., Chen, L., Chen, J.-Q. & Tian, D. Unique evolutionary mechanism in R-genes under the presence/absence polymorphism in Arabidopsis thaliana. Genetics 172, 1243–1250 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Korves, T. & Bergelson, J. A novel cost of R gene resistance in the presence of disease. Am. Nat. 163, 489–504 (2004)

    Article  PubMed  Google Scholar 

  70. Siegal, M. L. & Hartl, D. L. Transgene coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics 144, 715–726 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Plagnol, V., Padhukasahasram, B., Wall, J. D., Marjoram, P. & Nordborg, M. Relative influences of crossing-over and gene conversion on the pattern of linkage disequilibrium in Arabidopsis thaliana. Genetics 172, 2441–2448 (2005)

    Article  PubMed  Google Scholar 

  72. Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genet. 38, 203–208 (2006)

    Article  CAS  PubMed  Google Scholar 

  73. Remington, D. L. et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc. Natl Acad. Sci. USA 98, 11479–11484 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Aranzana, M. et al. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genetics 1, e60 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  75. Schlotterer, C. Hitchhiking mapping—functional genomics from the population genetics perspective. Trends Genet. 19, 32–38 (2003)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Noor, M. Nordborg and our collaborators and laboratory members for discussion and comments. T.M.-O. and J.S. were supported by Duke University and the National Science Foundation, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mitchell-Olds.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell-Olds, T., Schmitt, J. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441, 947–952 (2006). https://doi.org/10.1038/nature04878

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04878

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing