Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance

Abstract

Stochastic resonance1,2 is a counterintuitive concept: the addition of noise to a noisy system induces coherent amplification of its response. First suggested as a mechanism for the cyclic recurrence of ice ages, stochastic resonance has been seen in a wide variety of macroscopic physical systems: bistable ring lasers3, superconducting quantum interference devices4,5 (SQUIDs), magnetoelastic ribbons6 and neurophysiological systems such as the receptors in crickets7 and crayfish8. Although fundamentally important as a mechanism of coherent signal amplification, stochastic resonance has yet to be observed in nanoscale systems. Here we report the observation of stochastic resonance in bistable nanomechanical silicon oscillators. Our nanomechanical systems consist of beams that are clamped at each end and driven into transverse oscillation with the use of a radiofrequency source. Modulation of the source induces controllable switching of the beams between two stable, distinct states. We observe that the addition of white noise causes a marked amplification of the signal strength. Stochastic resonance in nanomechanical systems could have a function in the realization of controllable high-speed nanomechanical memory cells, and paves the way for exploring macroscopic quantum coherence and tunnelling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of measurement circuit.
Figure 2: Re-emergence of switching behaviour as a function of added white noise on beam 1 ( f drive = 23.4973 MHz).
Figure 3: Switching behaviour as a function of temperature on beam 2 ( f drive = 20.8348 MHz).
Figure 4: Behaviour of higher harmonics.

Similar content being viewed by others

References

  1. Benzi, R., Sutera, A., Parisi, G. & Vulpiani, A. A theory of stochastic resonance in climatic change. J. Appl. Math. 43, 565–578 (1983)

    MathSciNet  MATH  Google Scholar 

  2. Gammaitoni, L., Hänggi, P., Jung, P. & Marchesoni, F. Stochastic resonance. Rev. Mod. Phys. 70, 223–287 (1998)

    Article  ADS  CAS  Google Scholar 

  3. McNamara, B., Wiesenfeld, K. & Roy, R. Observation of stochastic resonance in a ring laser. Phys. Rev. Lett. 60, 2626–2629 (1988)

    Article  ADS  CAS  Google Scholar 

  4. Hibbs, A. D. et al. Stochastic resonance in a superconducting loop with a Josephson junction. J. Appl. Phys. 77, 2582–2590 (1995)

    Article  ADS  CAS  Google Scholar 

  5. Rouse, R., Han, S. & Lukens, J. E. Flux amplification using stochastic superconducting quantum interference devices. Appl. Phys. Lett. 66, 108–110 (1995)

    Article  ADS  CAS  Google Scholar 

  6. Spano, M. L., Wun-Fogle, M. & Ditto, W. L. Experimental observation of stochastic resonance in a magnetoelastic ribbon. Phys. Rev. A 46, R5253–R5256 (1992)

    Article  ADS  Google Scholar 

  7. Levin, J. E. & Miller, J. P. Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance. Nature 380, 165–168 (1996)

    Article  ADS  CAS  Google Scholar 

  8. Douglass, J. K., Wilkens, L., Pantazelou, E. & Moss, F. Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365, 337–340 (1993)

    Article  ADS  CAS  Google Scholar 

  9. Carr, S. M., Lawrence, W. E. & Wybourne, M. N. Accessibility of quantum effects in mesomechanical systems. Phys. Rev. B 64, 220101 (2001)

    Article  ADS  Google Scholar 

  10. Nayfeh, A. H. & Mook, D. T. Nonlinear Oscillations (Wiley, New York, 1979)

    MATH  Google Scholar 

  11. Weaver, W., Timoshenko, S. P. & Young, D. H. Vibration Problems in Engineering (Wiley, New York, 1990)

    Google Scholar 

  12. Badzey, R. L., Zolfagharkhani, G., Gaidarzhy, A. & Mohanty, P. A controllable nanomechanical memory element. Appl. Phys. Lett. 85, 3587–3589 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Benzi, R., Sutera, A. & Vulpiani, A. Stochastic resonance in the Landau–Ginzburg equation. J. Phys. A 18, 2239–2245 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  14. Greywall, D. S., Yurke, B., Busch, P. A., Pargellis, A. N. & Willett, R. L. Evading amplifier noise in nonlinear oscillators. Phys. Rev. Lett. 72, 2992–2995 (1994)

    Article  ADS  CAS  Google Scholar 

  15. Badzey, R. L., Zolfagharkhani, G., Gaidarzhy, A. & Mohanty, P. Temperature dependence of a nanomechanical switch. Appl. Phys. Lett. 86, 023106 (2005)

    Article  ADS  Google Scholar 

  16. Inchiosa, M. E., Bulsara, A. R. & Gammaitoni, L. Higher-order resonant behaviour in asymmetric nonlinear stochastic systems. Phys. Rev. E 55, 4049–4056 (1997)

    Article  ADS  CAS  Google Scholar 

  17. Inchiosa, M. E. & Bulsara, A. R. dc signal detection via dynamical asymmetry in a nonlinear device. Phys. Rev. E 58, 115–127 (1998)

    Article  ADS  CAS  Google Scholar 

  18. Bulsara, A., Jacobs, E. W., Zhou, T., Moss, F. & Kiss, L. Stochastic resonance in a single neuron model—theory and analog simulation. J. Theor. Biol. 152, 531–555 (1991)

    Article  CAS  Google Scholar 

  19. Gammaitoni, L., Marchesoni, F., Menichellasaetta, E. & Santucci, S. Multiplicative stochastic resonance. Phys. Rev. E 49, 4878–4881 (1994)

    Article  ADS  CAS  Google Scholar 

  20. McNamara, B. & Weisenfeld, K. Theory of stochastic resonance. Phys. Rev. A 39, 4854–4869 (1989)

    Article  ADS  CAS  Google Scholar 

  21. Morillo, M. & Gomez-Ordoñez, J. Amplification and distortion of a periodic rectangular driving signal by a noisy bistable system. Phys. Rev. E 51, 999–1003 (1995)

    Article  ADS  CAS  Google Scholar 

  22. Casado-Pascual, J., Gomez-Ordoñez, J. & Morillo, M. Nonlinear stochastic resonance with subthreshold rectangular pulses. Phys. Rev. E 69, 067101 (2004)

    Article  ADS  Google Scholar 

  23. Gaidarzhy, A., Zolfagharkhani, G., Badzey, R. & Mohanty, P. Evidence for quantized displacement in macroscopic nanomechanical oscillators. Phys. Rev. Lett. 94, 030402 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Nanoscale Exploratory Research (NER) program of the National Science Foundation and the DOD/ARL for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritiraj Mohanty.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badzey, R., Mohanty, P. Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance. Nature 437, 995–998 (2005). https://doi.org/10.1038/nature04124

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04124

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing