Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts

Abstract

The isotopic compositions of mid-ocean-ridge basalts (MORB) from the Indian Ocean have led to the identification of a large-scale isotopic anomaly relative to Pacific and Atlantic ocean MORB1. Constraining the origin of this so-called DUPAL anomaly2 may lead to a better understanding of the genesis of upper-mantle heterogeneity. Previous isotopic studies3,4,5,6,7,8,9,10 have proposed recycling of ancient subcontinental lithospheric mantle or sediments with oceanic crust to be responsible for the DUPAL signature. Here we report Os, Pb, Sr and Nd isotopic compositions of Indian MORB from the Central Indian ridge, the Rodriguez triple junction and the South West Indian ridge. All measured samples have higher 187Os/188Os ratios than the depleted upper-mantle value11,12 and Pb, Sr and Nd isotopic compositions that imply the involvement of at least two distinct enriched components in the Indian upper-mantle. Using isotopic and geodynamical arguments, we reject both subcontinental lithospheric mantle and recycled sediments with oceanic crust as the cause of the DUPAL anomaly. Instead, we argue that delamination of lower continental crust may explain the DUPAL isotopic signature of Indian MORB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 1/Os versus 187Os/188Os ratios of MORB from CIR, RTJ and 39–41°E SWIR segment.
Figure 2: Latitudinal isotopic variation of CIR and RTJ basalts.
Figure 3: Pb, Sr, Nd and Os isotopic variations of the CIR, the RTJ, the 39–41°E SWIR and the AFN.

Similar content being viewed by others

References

  1. Dupré, B. & Allègre, C. J. Pb–Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature 303, 142–146 (1983)

    Article  ADS  Google Scholar 

  2. Hart, S. R. A large-scale isotope anomaly in the southern hemisphere mantle. Nature 309, 753–757 (1984)

    Article  ADS  CAS  Google Scholar 

  3. Hamelin, B. & Allègre, C. J. Large-scale units in the depleted upper mantle revealed by an isotope study of the Southwest Indian Ridge. Nature 315, 196–199 (1985)

    Article  ADS  CAS  Google Scholar 

  4. Hamelin, B., Dupré, B. & Allègre, C. J. Pb-Sr-Nd isotopic data of Indian Ocean ridges: new evidence of large-scale mapping of mantle heterogeneities. Earth Planet. Sci. Lett. 76, 288–298 (1985/86)

    Article  ADS  Google Scholar 

  5. Michard, A., Montigny, R. & Schlich, R. Geochemistry of the mantle beneath the Rodriguez Triple Junction and the South-East Indian Ridge. Earth Planet. Sci. Lett. 78, 104–114 (1986)

    Article  ADS  CAS  Google Scholar 

  6. Price, R. C., Kennedy, A. K., Riggs-Sneeringer, M. & Frey, F. A. Geochemistry of basalts from the Indian Ocean triple junction: implications for the generation and evolution of Indian Ocean ridge basalts. Earth Planet. Sci. Lett. 78, 379–396 (1986)

    Article  ADS  CAS  Google Scholar 

  7. Dosso, L., Bougault, H., Beuzart, P., Calvez, J. Y. & Joron, J.-L. The geochemical structure of the South-East Indian ridge. Earth Planet. Sci. Lett. 88, 47–59 (1988)

    Article  ADS  CAS  Google Scholar 

  8. Mahoney, J. J. et al. Isotopic and geochemical provinces of the Western Indian Ocean spreading centers. J. Geophys. Res. 94, 4033–4052 (1989)

    Article  ADS  CAS  Google Scholar 

  9. Mahoney, J. J., LeRoex, A. P., Peng, Z., Fisher, R. L. & Natland, J. H. Southwestern limits of Indian Ocean ridge mantle and the origin of low 206Pb/204Pb mid-ocean ridge basalt: isotope systematics of the central Southwest Indian Ridge (17°-50°E). J. Geophys. Res. 97, 19771–19790 (1992)

    Article  ADS  CAS  Google Scholar 

  10. Rehkämper, M. & Hofmann, A. W. Recycled ocean crust and sediment in Indian Ocean MORB. Earth Planet. Sci. Lett. 147, 93–106 (1997)

    Article  ADS  Google Scholar 

  11. Roy-Barman, M. & Allègre, C. J. 187Os/186Os ratios in mid-ocean ridge basalts and abyssal peridotites. Geochim. Cosmochim. Acta 58, 5043–5054 (1994)

    Article  ADS  CAS  Google Scholar 

  12. Snow, J. E. & Reisberg, L. Os isotopic systematics of the MORB mantle: results from altered abyssal peridotites. Earth Planet. Sci. Lett. 133, 411–421 (1995)

    Article  ADS  CAS  Google Scholar 

  13. Martin, C. E. Osmium isotopic characteristics of mantle-derived rocks. Geochim. Cosmochim. Acta 55, 1421–1434 (1991)

    Article  ADS  CAS  Google Scholar 

  14. Pegram, W. J. & Allègre, C. J. Osmium isotopic composition from oceanic basalts. Earth Planet. Sci. Lett. 111, 59–68 (1992)

    Article  ADS  CAS  Google Scholar 

  15. Hauri, E. H. & Hart, S. R. Re-Os isotope systematics of HIMU and EMII oceanic island basalts from the south Pacific Ocean. Earth Planet. Sci. Lett. 114, 353–371 (1993)

    Article  ADS  CAS  Google Scholar 

  16. Reisberg, L. et al. Os isotope systematics in ocean island basalts. Earth Planet. Sci. Lett. 120, 149–167 (1993)

    Article  ADS  CAS  Google Scholar 

  17. Roy-Barman, M. & Allègre, C. J. 187Os/186Os in Oceanic Island Basalt: Tracing oceanic crust recycling in the mantle. Earth Planet. Sci. Lett. 129, 145–161 (1995)

    Article  ADS  CAS  Google Scholar 

  18. Chesley, J., Righter, K. & Ruiz, J. Large-scale mantle metasomatism: a Re-Os perspective. Earth Planet. Sci. Lett. 219, 49–60 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Schaefer, B. F., Turner, S., Parkinson, I., Rogers, N. & Hawkesworth, C. Evidence for recycled Archaean oceanic mantle lithosphere in the Azores plume. Nature 420, 304–307 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Schiano, P., Birck, J. L. & Allègre, C. J. Osmium-strontium-neodymium-lead isotopic covariations in mid-ocean ridge basalt glasses and heterogeneity of the upper mantle. Earth Planet. Sci. Lett. 150, 363–379 (1997)

    Article  ADS  CAS  Google Scholar 

  21. Levasseur, S., Birck, J.-L. & Allègre, C. J. Direct measurement of femtomoles of osmium and the 187Os/186Os ratio in seawater. Science 282, 272–274 (1998)

    Article  ADS  CAS  Google Scholar 

  22. Mahoney, J. J., White, W. M., Upton, B. G. J., Neal, C. R. & Scrutton, R. A. Beyond EM-1: Lavas from Afanasy-Nikitin Rise and the Crozet Archipelago, Indian Ocean. Geology 24, 615–618 (1996)

    Article  ADS  CAS  Google Scholar 

  23. Hanan, B. B. & Graham, D. W. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science 272, 991–995 (1996)

    Article  ADS  CAS  Google Scholar 

  24. Kamenetsky, V. S. et al. Remnants of Gondwanan continental lithosphere in oceanic upper mantle: Evidence from the South Atlantic Ridge. Geology 29, 243–246 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Jull, M. & Kelemen, P. B. On the condition for lower crust convective instability. J. Geophys. Res. 106, 6423–6446 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Saal, A. E., Rudnick, R. L., Ravizza, G. E. & Hart, S. R. Re-Os isotope evidence for the composition, formation and age of the lower continental crust. Nature 393, 58–61 (1998)

    Article  ADS  CAS  Google Scholar 

  27. Rudnick, R. L. in The Continental Lower Crust (eds Fountain, D. M., Arculus, R. & Kay, R.) 269–316 (Elsevier, Amsterdam, 1992)

    Google Scholar 

  28. Rudnick, R. L. & Fountain, D. M. Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys. 33, 267–309 (1995)

    Article  ADS  Google Scholar 

  29. Rogers, N. W. & Hawkesworth, C. J. Proterozoic age and cumulate origin for granulite xenoliths, Lesotho. Nature 299, 409–413 (1982)

    Article  ADS  CAS  Google Scholar 

  30. Cohen, R. S., O'Nions, R. K. & Dawson, J. B. Isotope geochemistry of xenoliths from East Africa: implications for development of mantle reservoirs and their interaction. Earth Planet. Sci. Lett. 68, 209–220 (1984)

    Article  ADS  CAS  Google Scholar 

  31. Huang, Y.-M., Van Calsteren, P. W. & Hawkesworth, C. J. The evolution of the lithosphere in southern Africa: a perspective on the basic granulite xenoliths from kimberlites in south Africa. Geochim. Cosmochim. Acta 59, 4905–4920 (1995)

    Article  ADS  CAS  Google Scholar 

  32. Hirschmann, M. M. & Stolper, E. M. A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib. Mineral. Petrol. 124, 185–208 (1996)

    Article  ADS  CAS  Google Scholar 

  33. Rehkämper, M. et al. Ir, Ru, Pt, and Pd in basalts and komatiites: New constraints for the geochemical behavior of the platinum-group elements in the mantle. Geochim. Cosmochim. Acta 63, 3915–3934 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.E thanks C.H. Langmuir for helpful discussions and its comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Escrig.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escrig, S., Capmas, F., Dupré, B. et al. Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts. Nature 431, 59–63 (2004). https://doi.org/10.1038/nature02904

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02904

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing