Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy

Abstract

The molecular complexity of tissues and the inaccessibility of most cells within a tissue limit the discovery of key targets for tissue-specific delivery of therapeutic and imaging agents in vivo. Here, we describe a hypothesis-driven, systems biology approach to identifying a small subset of proteins induced at the tissue–blood interface that are inherently accessible to antibodies injected intravenously. We use subcellular fractionation, subtractive proteomics and bioinformatics to identify endothelial cell surface proteins exhibiting restricted tissue distribution and apparent tissue modulation. Expression profiling and γ-scintigraphic imaging with antibodies establishes two of these proteins, aminopeptidase-P and annexin A1, as selective in vivo targets for antibodies in lungs and solid tumours, respectively. Radio-immunotherapy to annexin A1 destroys tumours and increases animal survival. This analytical strategy can map tissue- and disease-specific expression of endothelial cell surface proteins to uncover novel accessible targets useful for imaging and therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular heterogeneity of endothelial cell surface in multiple rat organs in vivo.
Figure 2: In vivo γ-scintigraphic imaging of APP antibody targeting in normal and tumour-bearing rats.
Figure 3: Mapping rat lung tumours and organs for differential endothelial cell surface protein expression in vivo.
Figure 4: Tumour-specific targeting of 125I-AnnA1 antibodies after intravenous injection into tumour-bearing rats.
Figure 5: AnnA1 targeted radio-immunotherapy increases survival in rats.
Figure 6: Expression of AnnA1 on vascular endothelium of multiple primary human solid tumours.

Similar content being viewed by others

References

  1. Massoud, T. F. & Gambhir, S. S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545–580 (2003)

    Article  CAS  Google Scholar 

  2. Herschman, H. R. Molecular imaging: looking at problems, seeing solutions. Science 302, 605–608 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Rudin, M. & Weissleder, R. Molecular imaging in drug discovery and development. Nature Rev. Drug Discov. 2, 123–131 (2003)

    Article  CAS  Google Scholar 

  4. Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. Nature Rev. Cancer 2, 11–18 (2002)

    Article  CAS  Google Scholar 

  5. Drews, J. Drug discovery: a historical perspective. Science 287, 1960–1964 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Lindsay, M. A. Target discovery. Nature Rev. Drug Discov. 2, 831–838 (2003)

    Article  CAS  Google Scholar 

  7. Workman, P. New drug targets for genomic cancer therapy: successes, limitations, opportunities and future challenges. Curr. Cancer Drug Targets 1, 33–47 (2001)

    Article  CAS  Google Scholar 

  8. Anzick, S. L. & Trent, J. M. Role of genomics in identifying new targets for cancer therapy. Oncology (Huntingt.) 16, 7–13 (2002)

    Google Scholar 

  9. Cavenee, W. K. Genetics and new approaches to cancer therapy. Carcinogenesis 23, 683–686 (2002)

    Article  CAS  Google Scholar 

  10. Huber, L. A. Is proteomics heading in the wrong direction? Nature Rev. Mol. Cell Biol. 4, 74–80 (2003)

    Article  CAS  Google Scholar 

  11. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Jain, R. K. The next frontier of molecular medicine: delivery of therapeutics. Nature Med. 4, 655–657 (1998)

    Article  CAS  Google Scholar 

  13. Dvorak, H. F., Nagy, J. A. & Dvorak, A. M. Structure of solid tumors and their vasculature: implications for therapy with monoclonal antibodies. Cancer Cells 3, 77–85 (1991)

    CAS  PubMed  Google Scholar 

  14. von Mehren, M., Adams, G. P. & Weiner, L. M. Monoclonal antibody therapy for cancer. Annu. Rev. Med. 54, 343–369 (2003)

    Article  CAS  Google Scholar 

  15. Farah, R. A., Clinchy, B., Herrera, L. & Vitetta, E. S. The development of monoclonal antibodies for the therapy of cancer. Crit. Rev. Eukaryot. Gene Expr. 8, 321–356 (1998)

    Article  CAS  Google Scholar 

  16. Carver, L. A. & Schnitzer, J. E. Caveolae: mining little caves for new cancer targets. Nature Rev. Cancer 3, 571–581 (2003)

    Article  CAS  Google Scholar 

  17. Schnitzer, J. E. Vascular targeting as a strategy for cancer therapy. N. Engl. J. Med. 339, 472–474 (1998)

    Article  CAS  Google Scholar 

  18. Madri, J. A. & Williams, S. K. Capillary endothelial cell culture: Phenotype modulation by matrix components. J. Cell Biol. 97, 153–165 (1983)

    Article  CAS  Google Scholar 

  19. Schnitzer, J. E. in Vascular Endothelium: Physiology, Pathology and Therapeutic Opportunities (eds Born, G. V. R. & Schwartz, C. J.) 77–95 (Schattauer, Stuttgart, 1997)

    Google Scholar 

  20. Aird, W. C. et al. Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment. J. Cell Biol. 138, 1117–1124 (1997)

    Article  CAS  Google Scholar 

  21. Janzer, R. C. & Raff, M. C. Astrocytes induce blood–brain barrier properties in endothelial cells. Nature 325, 253–257 (1987)

    Article  ADS  CAS  Google Scholar 

  22. Stewart, P. A. & Wiley, M. J. Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev. Biol. 84, 183–192 (1981)

    Article  CAS  Google Scholar 

  23. Auerbach, R. et al. Specificity of adhesion between murine tumor cells and capillary endothelium: an in vitro correlate of preferential metastasis in vivo. Cancer Res. 47, 1492–1496 (1987)

    CAS  PubMed  Google Scholar 

  24. Pasqualini, R. & Ruoslahti, E. Organ targeting in vivo using phage display peptide libraries. Nature 380, 364–366 (1996)

    Article  ADS  CAS  Google Scholar 

  25. Rajotte, D. et al. Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J. Clin. Invest. 102, 430–437 (1998)

    Article  CAS  Google Scholar 

  26. Papetti, M. & Herman, I. M. Mechanisms of normal and tumor-derived angiogenesis. Am. J. Physiol. Cell Physiol. 282, C947–C970 (2002)

    Article  CAS  Google Scholar 

  27. Ferrara, N. VEGF and the quest for tumour angiogenesis factors. Nature Rev. Cancer 2, 795–803 (2002)

    Article  CAS  Google Scholar 

  28. Kerbel, R. & Folkman, J. Clinical translation of angiogenesis inhibitors. Nature Rev. Cancer 2, 727–739 (2002)

    Article  CAS  Google Scholar 

  29. St Croix, B. et al. Genes expressed in human tumor endothelium. Science 289, 1197–1202 (2000)

    Article  ADS  CAS  Google Scholar 

  30. Huang, X. et al. Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science 275, 547–550 (1997)

    Article  CAS  Google Scholar 

  31. McIntosh, D. P., Tan, X.-Y., Oh, P. & Schnitzer, J. E. Targeting endothelium and its dynamic caveolae for tissue-specific transcytosis in vivo: A pathway to overcome cell barriers to drug and gene delivery. Proc. Natl Acad. Sci. USA 99, 1996–2001 (2002)

    Article  ADS  CAS  Google Scholar 

  32. Sipkins, D. A. et al. Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nature Med. 4, 623–626 (1998)

    Article  CAS  Google Scholar 

  33. Hu, Z. & Garen, A. Targeting tissue factor on tumor vascular endothelial cells and tumor cells for immunotherapy in mouse models of prostatic cancer. Proc. Natl Acad. Sci. USA 98, 12180–12185 (2001)

    Article  ADS  CAS  Google Scholar 

  34. Hood, J. D. et al. Tumor regression by targeted gene delivery to the neovasculature. Science 296, 2404–2407 (2002)

    Article  ADS  CAS  Google Scholar 

  35. Oh, P. & Schnitzer, J. E. in Cell Biology: A Laboratory Handbook (ed. Celis, J.) 34–36 (Academic Press, Orlando, 1998)

    Google Scholar 

  36. Schnitzer, J. E., McIntosh, D. P., Dvorak, A. M., Liu, J. & Oh, P. Separation of caveolae from associated microdomains of GPI-anchored proteins. Science 269, 1435–1439 (1995)

    Article  ADS  CAS  Google Scholar 

  37. Schnitzer, J. E. gp60 is an albumin-binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am. J. Physiol. 262, H246–H254 (1992)

    CAS  PubMed  Google Scholar 

  38. Henniker, A. J., Bradstock, K. F., Grimsley, P. & Atkinson, M. K. A novel non-lineage antigen on human leucocytes: characterization with two CD-48 monoclonal antibodies. Dis. Markers 8, 179–190 (1990)

    CAS  PubMed  Google Scholar 

  39. Essler, M. & Ruoslahti, E. Molecular specialization of breast vasculature: a breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proc. Natl Acad. Sci. USA 99, 2252–2257 (2002)

    Article  ADS  CAS  Google Scholar 

  40. Perillo, N. L., Marcus, M. E. & Baum, L. G. Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. J. Mol. Med. 76, 402–412 (1998)

    Article  CAS  Google Scholar 

  41. Gerke, V. & Moss, S. E. Annexins: from structure to function. Physiol. Rev. 82, 331–371 (2002)

    Article  CAS  Google Scholar 

  42. Dreier, R., Schmid, K. W., Gerke, V. & Riehemann, K. Differential expression of annexins I, II and IV in human tissues: an immunohistochemical study. Histochem. Cell Biol. 110, 137–148 (1998)

    Article  CAS  Google Scholar 

  43. Eberhard, D. A., Brown, M. D. & VandenBerg, S. R. Alterations of annexin expression in pathological neuronal and glial reactions. Immunohistochemical localization of annexins I, II (p36 and p11 subunits), IV, and VI in the human hippocampus. Am. J. Pathol. 145, 640–649 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ahn, S. H., Sawada, H., Ro, J. Y. & Nicolson, G. L. Differential expression of annexin I in human mammary ductal epithelial cells in normal and benign and malignant breast tissues. Clin. Exp. Metastasis 15, 151–156 (1997)

    Article  CAS  Google Scholar 

  45. McKanna, J. A. & Zhang, M. Z. Immunohistochemical localization of lipocortin 1 in rat brain is sensitive to pH, freezing, and dehydration. J. Histochem. Cytochem. 45, 527–538 (1997)

    Article  CAS  Google Scholar 

  46. Bredow, S., Lewin, M., Hofmann, B., Marecos, E. & Weissleder, R. Imaging of tumour neovasculature by targeting the TGF-beta binding receptor endoglin. Eur. J. Cancer 36, 675–681 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Wempren, K. Hearn, M. Bourne, L. Randall and T. Smith for technical assistance. This research was supported by the National Institute of Health (Heart, Lung and Blood), National Cancer Institute, Sidney Kimmel, Schutz Foundation, California Tobacco-related Disease Research Program and California Breast Cancer Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan E. Schnitzer.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Methods

Includes information on: materials; expression profiling in vivo of candidate proteins; rat tumor models; gamma scintigraphic imaging and biodistribution analysis. (DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, P., Li, Y., Yu, J. et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429, 629–635 (2004). https://doi.org/10.1038/nature02580

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02580

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing