Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization

Abstract

The structural change that generates force and motion in actomyosin motility has been proposed to be tilting of the myosin light chain domain, which serves as a lever arm. Several experimental approaches have provided support for the lever arm hypothesis; however, the extent and timing of tilting motions are not well defined in the motor protein complex of functioning actomyosin. Here we report three-dimensional measurements of the structural dynamics of the light chain domain of brain myosin V using a single-molecule fluorescence polarization technique that determines the orientation of individual protein domains with 20–40-ms time resolution. Single fluorescent calmodulin light chains tilted back and forth between two well-defined angles as the myosin molecule processively translocated along actin. The results provide evidence for lever arm rotation of the calmodulin-binding domain in myosin V, and support a ‘hand-over-hand’ mechanism for the translocation of double-headed myosin V molecules along actin filaments. The technique is applicable to the study of real-time structural changes in other biological systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Data trace from a single myosin V molecule translocating along actin in the presence of 5 µM ATP.
Figure 2: Data trace from a myosin V molecule bound to actin in the absence of ATP.
Figure 3: Transition averages.
Figure 4: Distributions of average β-values in the presence and absence of ATP.
Figure 5: Event kinetics.

Similar content being viewed by others

References

  1. Reedy, M. K., Holmes, K. C. & Tregear, R. T. Induced changes in orientation of the cross-bridges of glycerinated insect flight muscle. Nature 207, 1276–1280 (1965)

    Article  ADS  CAS  Google Scholar 

  2. Rayment, I. et al. Structure of the actin–myosin complex and its implications for muscle contraction. Science 261, 58–65 (1993)

    Article  ADS  CAS  Google Scholar 

  3. Spudich, J. A. The myosin swinging cross-bridge model. Nature Rev. Mol. Cell Biol. 2, 387–392 (2001)

    Article  CAS  Google Scholar 

  4. Geeves, M. A. & Holmes, K. C. Structural mechanism of muscle contraction. Annu. Rev. Biochem. 68, 687–728 (1999)

    Article  CAS  Google Scholar 

  5. Irving, M. & Piazzesi, G. Motions of myosin heads that drive muscle contraction. News Physiol. Sci. 12, 249–254 (1997)

    CAS  Google Scholar 

  6. Goldman, Y. E. Wag the tail: Structural dynamics of actomyosin. Cell 93, 1–4 (1998)

    Article  CAS  Google Scholar 

  7. Cheney, R. E. et al. Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75, 13–23 (1993)

    Article  CAS  Google Scholar 

  8. De La Cruz, E. M., Wells, A. L., Rosenfeld, S. S., Ostap, E. M. & Sweeney, H. L. The kinetic mechanism of myosin V. Proc. Natl Acad. Sci. USA 96, 13726–13731 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Mehta, A. D. et al. Myosin-V is a processive actin-based motor. Nature 400, 590–593 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Mehta, A. Myosin learns to walk. J. Cell Sci. 114, 1981–1998 (2001)

    CAS  PubMed  Google Scholar 

  11. Rief, M. et al. Myosin-V stepping kinetics: A molecular model for processivity. Proc. Natl Acad. Sci. USA 97, 9482–9486 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Sakamoto, T., Amitani, I., Yokota, E. & Ando, T. Direct observation of processive movement by individual myosin V molecules. Biochem. Biophys. Res. Commun. 272, 586–590 (2000)

    Article  CAS  Google Scholar 

  13. Walker, M. L. et al. Two-headed binding of a processive myosin to F-actin. Nature 405, 804–807 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Veigel, C., Wang, F., Bartoo, M. L., Sellers, J. R. & Molloy, J. E. The gated gait of the processive molecular motor, myosin V. Nature Cell Biol. 4, 59–65 (2002)

    Article  CAS  Google Scholar 

  15. Moore, J. R., Krementsova, E. B., Trybus, K. M. & Warshaw, D. M. Myosin V exhibits a high duty cycle and large unitary displacement. J. Cell Biol. 155, 625–635 (2001)

    Article  CAS  Google Scholar 

  16. Corrie, J. E. T. et al. Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction. Nature 400, 425–430 (1999)

    Article  ADS  CAS  Google Scholar 

  17. Corrie, J. E. T., Craik, J. S. & Munasinghe, V. R. N. A homobifunctional rhodamine for labeling proteins with defined orientations of a fluorophore. Bioconjug. Chem. 9, 160–167 (1998)

    Article  CAS  Google Scholar 

  18. Axelrod, D., Burghardt, T. P. & Thompson, N. L. Total internal reflection fluorescence. Annu. Rev. Biophys. Bioeng. 13, 247–268 (1984)

    Article  CAS  Google Scholar 

  19. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. & Yanagida, T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995)

    Article  ADS  CAS  Google Scholar 

  20. Forkey, J. N., Quinlan, M. E. & Goldman, Y. E. Protein structural dynamics by single-molecule fluorescence polarization. Prog. Biophys. Mol. Biol. 74, 1–35 (2000)

    Article  CAS  Google Scholar 

  21. Adachi, K. et al. Stepping rotation of F1-ATPase visualized through angle-resolved single-fluorophore imaging. Proc. Natl Acad. Sci. USA 97, 7243–7247 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Sase, I., Miyata, H., Ishiwata, S. & Kinosita, K. Jr Axial rotation of sliding actin filaments revealed by single-fluorophore imaging. Proc. Natl Acad. Sci. USA 94, 5646–5650 (1997)

    Article  ADS  CAS  Google Scholar 

  23. Warshaw, D. M. et al. Myosin conformational states determined by single fluorophore polarization. Proc. Natl Acad. Sci. USA 95, 8034–8039 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Ha, T., Glass, J., Enderle, Th., Chemla, D. S. & Weiss, S. Hindered rotational diffusion and rotational jumps of single molecules. Phys. Rev. Lett. 80, 2093–2096 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Sosa, H., Peterman, E. J. G., Moerner, W. E. & Goldstein, L. S. B. ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy. Nature Struct. Biol. 8, 540–544 (2001)

    Article  CAS  Google Scholar 

  26. Bopp, M. A., Jia, Y., Li, L., Cogdell, R. J. & Hochstrasser, R. M. Fluorescence and photobleaching dynamics of single light-harvesting complexes. Proc. Natl Acad. Sci. USA 94, 10630–10635 (1997)

    Article  ADS  CAS  Google Scholar 

  27. Empedocles, S. A., Neuhauser, R. & Bawendi, M. G. Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy. Nature 399, 126–130 (1999)

    Article  ADS  CAS  Google Scholar 

  28. Betzig, E. & Chichester, R. J. Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425 (1993)

    Article  ADS  CAS  Google Scholar 

  29. Dickson, R. M., Norris, D. J. & Moerner, W. E. Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis. Phys. Rev. Lett. 81, 5322–5325 (1998)

    Article  ADS  CAS  Google Scholar 

  30. Vale, R. D. & Oosawa, F. Protein motors and Maxwell's demons: Does mechanochemical transduction involve a thermal ratchet? Adv. Biophys. 26, 97–134 (1990)

    Article  CAS  Google Scholar 

  31. Block, S. M. Kinesin: What gives? Cell 93, 5–8 (1998)

    Article  CAS  Google Scholar 

  32. Okada, Y. & Hirokawa, N. A processive single-headed motor: Kinesin superfamily protein KIF1A. Science 283, 1152–1157 (1999)

    Article  ADS  CAS  Google Scholar 

  33. Hua, W., Chung, J. & Gelles, J. Distinguishing inchworm and hand-over-hand processive kinesin movement by neck rotation measurements. Science 295, 844–848 (2002)

    Article  ADS  CAS  Google Scholar 

  34. Tanaka, H. et al. The motor domain determines the large step of myosin-V. Nature 415, 192–195 (2002)

    Article  ADS  CAS  Google Scholar 

  35. Nishikawa, S. et al. Class VI myosin moves processively along actin filaments backward with large steps. Biochem. Biophys. Res. Commun. 290, 311–317 (2002)

    Article  CAS  Google Scholar 

  36. De La Cruz, E. M., Ostap, E. M. & Sweeney, H. L. Kinetic mechanism and regulation of myosin VI. J. Biol. Chem. 276, 32373–32381 (2001)

    Article  CAS  Google Scholar 

  37. Pardee, J. D. & Spudich, J. A. Purification of muscle actin. Methods Cell Biol. 24, 271–289 (1982)

    Article  CAS  Google Scholar 

  38. Cooper, J. A., Walker, S. B. & Pollard, T. D. Pyrene actin: Documentation of the validity of a sensitive assay for actin polymerization. J. Muscle Res. Cell Motil. 4, 253–262 (1983)

    Article  CAS  Google Scholar 

  39. Putkey, J. A. et al. Chicken calmodulin genes. J. Biol. Chem. 258, 11864–11870 (1983)

    CAS  PubMed  Google Scholar 

  40. Putkey, J. A., Slaughter, G. R. & Means, A. R. Bacterial expression and characterization of proteins derived from the chicken calmodulin cDNA and a calmodulin processed gene. J. Biol. Chem. 260, 4704–4712 (1985)

    CAS  PubMed  Google Scholar 

  41. Cheney, R. E. Purification and assay of myosin V. Methods Enzymol. 298, 3–18 (1998)

    Article  CAS  Google Scholar 

  42. Moisescu, D. G. & Thieleczek, R. Sarcomere length effects on the Sr2+- and Ca2+-activation curves in skinned frog muscle fibres. Biochim. Biophys. Acta 546, 64–76 (1979)

    Article  CAS  Google Scholar 

  43. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes in C: The Art of Scientific Computing 2nd edn (Cambridge Univ. Press, Cambridge, UK, 1992)

    MATH  Google Scholar 

  44. Burgess, S. et al. The prepower stroke conformation of myosin V. J. Cell. Biol. 159, 983–991 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH and Medical Research Council. We thank H. Shuman, M. Ostap, H. Higuchi, M. Mooseker, R. Cheney, A. Houdusse, D. Trentham, R. Ferguson, B. Brandmeier and F. Vanzi for discussions, and R. Munasinghe, I. Gertsman, S. Manz, D. Keleti and N. Tang for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yale E. Goldman.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

41586_2003_BFnature01529_MOESM1_ESM.pdf

Supplementary Information: This file contains more detailed methods, as well as figures analogous to figures 1, 3 and 4 of the main text, but for data collected at 40 micromolar ATP. (PDF 108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forkey, J., Quinlan, M., Alexander Shaw, M. et al. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422, 399–404 (2003). https://doi.org/10.1038/nature01529

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01529

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing