Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

The role of immunity in Huntington's disease

Abstract

Huntington's disease (HD) is a devastating and incurable neurodegenerative disorder characterized by progressive cognitive, psychiatric and motor impairments. Although the disease has been seen as a disorder purely of the brain, there is now emerging evidence that abnormalities outside the central nervous system are commonly seen in HD. Indeed, the mutant huntingtin (mHtt) coded for by the abnormal gene in HD is found in every cell type where its presence has been sought. In particular, there are a number of recent observations in HD patients that mHtt interacts with the immune system with accumulating evidence that changes in the immune system may critically contribute to the pathology of HD. However, the nature of this contribution remains unclear, to the extent that it is not even known whether the immune system has a beneficial or detrimental role in HD patients. In this review, we attempt to bring a novel understanding to the interaction of the immune system to HD pathology, thereby shedding light on its potential pathogenic role. As part of this discussion, we revisit the clinical data on the anti-inflammatory drug trials in HD and propose new experimental approaches to interrogate the role of immunity in this currently incurable disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. van der Burg JM, Bjorkqvist M, Brundin P . Beyond the brain: widespread pathology in Huntington's disease. Lancet Neurol 2009; 8: 765–774.

    Article  PubMed  Google Scholar 

  2. Wright BL, Barker RA . Established and emerging therapies for Huntington′s disease. Curr Mol Med 2007; 7: 579–587.

    Article  CAS  PubMed  Google Scholar 

  3. Phillips W, Shannon KM, Barker RA . The current clinical management of Huntington′s disease. Mov Disord 2008; 23: 1491–1504.

    Article  PubMed  Google Scholar 

  4. Frank S, Jankovic J . Advances in the pharmacological management of Huntington′s disease. Drugs 2010; 70: 561–571.

    Article  CAS  PubMed  Google Scholar 

  5. Gil JM, Rego AC . Mechanisms of neurodegeneration in Huntington′s disease. Eur J Neurosci 2008; 27: 2803–2820.

    Article  PubMed  Google Scholar 

  6. Borrell-Pages M, Zala D, Humbert S, Saudou F . Huntington′s disease: from huntingtin function and dysfunction to therapeutic strategies. Cell Mol Life Sci 2006; 63: 2642–2660.

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y, Swanson RA . Astrocytes and brain injury. J Cereb Blood Flow Metab 2003; 23: 137–149.

    Article  PubMed  Google Scholar 

  8. Soulet D, Rivest S . Microglia. Curr Biol 2008; 18: R506–R508.

    Article  CAS  PubMed  Google Scholar 

  9. Nimmerjahn F, Ravetch JV . Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 2005; 310: 1510–1512.

    Article  CAS  PubMed  Google Scholar 

  10. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr . Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol 1985; 44: 559–577.

    Article  CAS  PubMed  Google Scholar 

  11. Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 2001; 60: 161–172.

    Article  CAS  PubMed  Google Scholar 

  12. Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ et al. Imaging microglial activation in Huntington's disease. Brain Res Bull 2007; 72: 148–151.

    Article  CAS  PubMed  Google Scholar 

  13. Politis M, Pavese N, Tai YF, Kiferle L, Mason SL, Brooks DJ et al. Microglial activation in regions related to cognitive function predicts disease onset in Huntington′s disease: a multimodal imaging study. Hum Brain Mapp 2011; 32: 258–270.

    Article  PubMed  Google Scholar 

  14. Pavese N, Politis M, Tai YF, Barker RA, Tabrizi SJ, Mason SL et al. Cortical dopamine dysfunction in symptomatic and premanifest Huntington's disease gene carriers. Neurobiol Dis 2010; 37: 356–361.

    Article  CAS  PubMed  Google Scholar 

  15. Moller T . Neuroinflammation in Huntington's disease. J Neural Transm 2010; 117: 1001–1008.

    Article  PubMed  Google Scholar 

  16. Bjorkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. J Exp Med 2008; 205: 1869–1877.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Saleh N, Moutereau S, Durr A, Krystkowiak P, Azulay JP, Tranchant C et al. Neuroendocrine disturbances in Huntington's disease. PLoS One 2009; 4: e4962.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Mukai H, Isagawa T, Goyama E, Tanaka S, Bence NF, Tamura A et al. Formation of morphologically similar globular aggregates from diverse aggregation-prone proteins in mammalian cells. Proc Natl Acad Sci USA 2005; 102: 10887–10892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gomez-Tortosa E, MacDonald ME, Friend JC, Taylor SA, Weiler LJ, Cupples LA et al. Quantitative neuropathological changes in presymptomatic Huntington′s disease. Ann Neurol 2001; 49: 29–34.

    Article  CAS  PubMed  Google Scholar 

  20. Sathasivam K, Hobbs C, Turmaine M, Mangiarini L, Mahal A, Bertaux F et al. Formation of polyglutamine inclusions in non-CNS tissue. Hum Mol Genet 1999; 8: 813–822.

    Article  CAS  PubMed  Google Scholar 

  21. Moffitt H, McPhail GD, Woodman B, Hobbs C, Bates GP . Formation of polyglutamine inclusions in a wide range of non-CNS tissues in the HdhQ150 knock-in mouse model of Huntington's disease. PLoS One 2009; 4: e8025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Bradford J, Shin JY, Roberts M, Wang CE, Li XJ, Li S . Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci USA 2009; 106: 22480–22485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shin JY, Fang ZH, Yu ZX, Wang CE, Li SH, Li XJ . Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol 2005; 171: 1001–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lievens JC, Woodman B, Mahal A, Spasic-Boscovic O, Samuel D, Kerkerian-Le Goff L et al. Impaired glutamate uptake in the R6 Huntington′s disease transgenic mice. Neurobiol Dis 2001; 8: 807–821.

    Article  CAS  PubMed  Google Scholar 

  25. Behrens PF, Franz P, Woodman B, Lindenberg KS, Landwehrmeyer GB . Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain 2002; 125: 1908–1922.

    Article  CAS  PubMed  Google Scholar 

  26. Hsiao HY, Chern Y . Targeting glial cells to elucidate the pathogenesis of Huntington's disease. Mol Neurobiol 2010; 41: 248–255.

    Article  CAS  PubMed  Google Scholar 

  27. Hassel B, Tessler S, Faull RL, Emson PC . Glutamate uptake is reduced in prefrontal cortex in Huntington's disease. Neurochem Res 2008; 33: 232–237.

    Article  CAS  PubMed  Google Scholar 

  28. Cicchetti F, Soulet D, Freeman TB . Neuronal degeneratin in striatal transplants and Huntington's disease: potential mechanisms and clinical implications. Brain 2010; 34: 641–652.

    Google Scholar 

  29. Arzberger T, Krampfl K, Leimgruber S, Weindl A . Changes of NMDA receptor subunit (NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington′s disease--an in situ hybridization study. J Neuropathol Exp Neurol 1997; 56: 440–454.

    Article  CAS  PubMed  Google Scholar 

  30. Chou SY, Weng JY, Lai HL, Liao F, Sun SH, Tu PH et al. Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes. J Neurosci 2008; 28: 3277–3290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aloisi F, Ria F, Adorini L . Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol Today 2000; 21: 141–147.

    Article  CAS  PubMed  Google Scholar 

  32. Kim SU, de Vellis J . Microglia in health and disease. J Neurosci Res 2005; 81: 302–313.

    Article  CAS  PubMed  Google Scholar 

  33. Tikka TM, Koistinaho JE . Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. J Immunol 2001; 166: 7527–7533.

    Article  CAS  PubMed  Google Scholar 

  34. Wang X, Zhu S, Drodza M, Zhang W, Stavrovskaya IG, Cattaneo E et al. Minocycline inhibits caspase-independent and-dependent mitochondrial cell death pathways in models of Huntington's disease. Proc Natl Acad Sci USA 2003; 100: 10483–10487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang X, Chen S, Ma G, Ye M, Lu G . Involvement of proinflammatory factors, apoptosis, caspase-3 activation and Ca2+ disturbance in microglia activation-mediated dopaminergic cell degeneration. Mech Ageing Dev 2005; 126: 1241–1254.

    Article  CAS  PubMed  Google Scholar 

  36. Palazuelos J, Aguado T, Pazos MR, Julien B, Carrasco C, Resel E et al. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington′s disease excitotoxicity. Brain 2009; 132: 3152–3164.

    Article  PubMed  Google Scholar 

  37. Bradford J, Shin JY, Roberts M, Wang CE, Sheng G, Li S et al. Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J Biol Chem 2010; 285: 10653–10661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saft C, Zange J, Andrich J, Muller K, Lindenberg K, Landwehrmeyer B et al. Mitochondrial impairment in patients and asymptomatic mutation carriers of Huntington's disease. Mov Disord 2005; 20: 674–679.

    Article  PubMed  Google Scholar 

  39. Singhrao SK, Neal JW, Morgan BP, Gasque P . Increased complement biosynthesis by microglia and complement activation on neurons in Huntington's disease. Exp Neurol 1999; 159: 362–376.

    Article  CAS  PubMed  Google Scholar 

  40. Khoshnan A, Ko J, Watkin EE, Paige LA, Reinhart PH, Patterson PH . Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant huntingtin neurotoxicity. J Neurosci 2004; 24: 7999–8008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Braak H, Del Tredici K . Invited article: nervous system pathology in sporadic Parkinson disease. Neurology 2008; 70: 1916–1925.

    Article  PubMed  Google Scholar 

  42. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E . Staging of brain pathology related to sporadic Parkinson′s disease. Neurobiol Aging 2003; 24: 197–211.

    Article  PubMed  Google Scholar 

  43. Haik S, Faucheux BA, Hauw JJ . Brain targeting through the autonomous nervous system: lessons from prion diseases. Trends Mol Med 2004; 10: 107–112.

    Article  PubMed  CAS  Google Scholar 

  44. Hawkes CH, Del Tredici K, Braak H . Parkinson's disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol 2007; 33: 599–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roodveldt C, Christodoulou J, Dobson CM . Immunological features of alpha-synuclein in Parkinson's disease. J Cell Mol Med 2008; 12: 1820–1829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Morten IJ, Gosal WS, Radford SE, Hewitt EW . Investigation into the role of macrophages in the formation and degradation of beta2-microglobulin amyloid fibrils. J Biol Chem 2007; 282: 29691–29700.

    Article  CAS  PubMed  Google Scholar 

  47. Yang W, Dunlap JR, Andrews RB, Wetzel R . Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum Mol Genet 2002; 11: 2905–2917.

    Article  CAS  PubMed  Google Scholar 

  48. Ren PH, Lauckner JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR . Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 2009; 11: 219–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Qureshi N, Vogel SN, Van Way C III, Papasian CJ, Qureshi AA, Morrison DC . The proteasome: a central regulator of inflammation and macrophage function. Immunol Res 2005; 31: 243–260.

    Article  CAS  PubMed  Google Scholar 

  50. Tydlacka S, Wang CE, Wang X, Li S, Li XJ . Differential activities of the ubiquitin-proteasome system in neurons versus glia may account for the preferential accumulation of misfolded proteins in neurons. J Neurosci 2008; 28: 13285–13295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barres BA, Barde Y . Neuronal and glial cell biology. Curr Opin Neurobiol 2000; 10: 642–648.

    Article  CAS  PubMed  Google Scholar 

  52. Ferrante RJ, Andreassen OA, Dedeoglu A, Ferrante KL, Jenkins BG, Hersch SM et al. Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington's disease. J Neurosci 2002; 22: 1592–1599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 2000; 6: 797–801.

    Article  CAS  PubMed  Google Scholar 

  54. Smith DL, Woodman B, Mahal A, Sathasivam K, Ghazi-Noori S, Lowden PA et al. Minocycline and doxycycline are not beneficial in a model of Huntington's disease. Ann Neurol 2003; 54: 186–196.

    Article  CAS  PubMed  Google Scholar 

  55. Mievis S, Levivier M, Communi D, Vassart G, Brotchi J, Ledent C et al. Lack of minocycline efficiency in genetic models of Huntington's disease. Neuromolecular Med 2007; 9: 47–54.

    Article  CAS  PubMed  Google Scholar 

  56. Stack EC, Smith KM, Ryu H, Cormier K, Chen M, Hagerty SW et al. Combination therapy using minocycline and coenzyme Q10 in R6/2 transgenic Huntington's disease mice. Biochim Biophys Acta 2006; 1762: 373–380.

    Article  CAS  PubMed  Google Scholar 

  57. Norflus F, Nanje A, Gutekunst CA, Shi G, Cohen J, Bejarano M et al. Anti-inflammatory treatment with acetylsalicylate or rofecoxib is not neuroprotective in Huntington's disease transgenic mice. Neurobiol Dis 2004; 17: 319–325.

    Article  CAS  PubMed  Google Scholar 

  58. Bantubungi K, Jacquard C, Greco A, Pintor A, Chtarto A, Tai K et al. Minocycline in phenotypic models of Huntington's disease. Neurobiol Dis 2005; 18: 206–217.

    Article  CAS  PubMed  Google Scholar 

  59. Ryu JK, Choi HB, McLarnon JG . Combined minocycline plus pyruvate treatment enhances effects of each agent to inhibit inflammation, oxidative damage, and neuronal loss in an excitotoxic animal model of Huntington's disease. Neuroscience 2006; 141: 1835–1848.

    Article  CAS  PubMed  Google Scholar 

  60. Menalled LB, Patry M, Ragland N, Lowden PA, Goodman J, Minnich J et al. Comprehensive behavioral testing in the R6/2 mouse model of Huntington's disease shows no benefit from CoQ10 or minocycline. PLoS One 2010; 5: e9793.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Bonelli RM, Heuberger C, Reisecker F . Minocycline for Huntington's disease: an open label study. Neurology 2003; 60: 883–884.

    Article  PubMed  Google Scholar 

  62. Bonelli RM, Hodl AK, Hofmann P, Kapfhammer HP . Neuroprotection in Huntington's disease: a 2-year study on minocycline. Int Clin Psychopharmacol 2004; 19: 337–342.

    Article  PubMed  Google Scholar 

  63. Thomas M, Ashizawa T, Jankovic J . Minocycline in Huntington's disease: a pilot study. Mov Disord 2004; 19: 692–695.

    Article  PubMed  Google Scholar 

  64. Reynolds N . Revisiting safety of minocycline as neuroprotection in Huntington's disease. Mov Disord 2007; 22: 292.

    Article  PubMed  Google Scholar 

  65. Kim HS, Suh YH . Minocycline and neurodegenerative diseases. Behav Brain Res 2009; 196: 168–179.

    Article  CAS  PubMed  Google Scholar 

  66. Giuliani F, Hader W, Yong VW . Minocycline attenuates T cell and microglia activity to impair cytokine production in T cell-microglia interaction. J Leukoc Biol 2005; 78: 135–143.

    Article  CAS  PubMed  Google Scholar 

  67. Song Y, Wei EQ, Zhang WP, Zhang L, Liu JR, Chen Z . Minocycline protects PC12 cells from ischemic-like injury and inhibits 5-lipoxygenase activation. Neuroreport 2004; 15: 2181–2184.

    Article  CAS  PubMed  Google Scholar 

  68. Fagan SC, Edwards DJ, Borlongan CV, Xu L, Arora A . Optimal delivery of minocycline to the brain: implication for human studies of acute neuroprotection. Exp Neurol 2004; 186: 248–251.

    Article  CAS  PubMed  Google Scholar 

  69. Colovic M, Caccia S . Liquid chromatographic determination of minocycline in brain-to-plasma distribution studies in the rat. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 791: 337–343.

    Article  CAS  PubMed  Google Scholar 

  70. Morton AJ, Glynn D, Leavens W, Zheng Z, Faull RL, Skepper JN et al. Paradoxical delay in the onset of disease caused by super-long CAG repeat expansions in R6/2 mice. Neurobiol Dis 2009; 33: 331–341.

    Article  CAS  PubMed  Google Scholar 

  71. Dragatsis I, Goldowitz D, Del Mar N, Deng YP, Meade CA, Liu L et al. CAG repeat lengths > or =335 attenuate the phenotype in the R6/2 Huntington's disease transgenic mouse. Neurobiol Dis 2009; 33: 315–330.

    Article  CAS  PubMed  Google Scholar 

  72. Menalled LB, Chesselet MF . Mouse models of Huntington's disease. Trends Pharmacol Sci 2002; 23: 32–39.

    Article  CAS  PubMed  Google Scholar 

  73. Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR . A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length. Clin Genet 2004; 65: 267–277.

    Article  CAS  PubMed  Google Scholar 

  74. Wexler NS, Lorimer J, Porter J, Gomez F, Moskowitz C, Shackell E et al. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington′s disease age of onset. Proc Natl Acad Sci USA 2004; 101: 3498–3503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Duyao M, Ambrose C, Myers R, Novelletto A, Persichetti F, Frontali M et al. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nat Genet 1993; 4: 387–392.

    Article  CAS  PubMed  Google Scholar 

  76. Nuti A, Maremmani C, Ceravolo R, Pavese N, Bonuccelli U, Muratorio A . Dexamethasone therapy in Huntington chorea: preliminary results. Riv Neurol 1991; 61: 225–227.

    CAS  PubMed  Google Scholar 

  77. Bonucelli U, Nuti A, Maremmani C, Ceravolo R, Muratorio A . Steroid therapy in Huntington's disease. In: Biggio G, Concas A, Costa E (ed). Advances in Biochemical Psychopharmacology. Rave Press: New York, USA, 1992, pp 149–154.

    Google Scholar 

  78. Sassone J, Colciago C, Cislaghi G, Silani V, Ciammola A . Huntington's disease: the current state of research with peripheral tissues. Exp Neurol 2009; 219: 385–397.

    Article  CAS  PubMed  Google Scholar 

  79. Soulet D, Rivest S . Bone-marrow-derived microglia: myth or reality? Curr Opin Pharmacol 2008; 8: 508–518.

    Article  CAS  PubMed  Google Scholar 

  80. Bjorkqvist M, Wild EJ, Tabrizi SJ . Harnessing immune alterations in neurodegenerative diseases. Neuron 2009; 64: 21–24.

    Article  PubMed  CAS  Google Scholar 

  81. Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ et al. Microglial activation in presymptomatic Huntington's disease gene carriers. Brain 2007; 130: 1759–1766.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their insightful comments and Dr Richard Poulin from the CRCHUL for his valuable editing. Special thanks to Martine Saint-Pierre for her assistance in the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D Soulet or F Cicchetti.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soulet, D., Cicchetti, F. The role of immunity in Huntington's disease. Mol Psychiatry 16, 889–902 (2011). https://doi.org/10.1038/mp.2011.28

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.28

Keywords

This article is cited by

Search

Quick links