Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic lymphocytic leukemia

Effects of miRNA-15 and miRNA-16 expression replacement in chronic lymphocytic leukemia: implication for therapy

Abstract

Chronic lymphocytic leukemia (CLL) clones are characterized by loss of a critical region in 13q14.3, (del(13)(q14)) involving the microRNA (miRNA) cluster miR-15a and miR-16-1. We have investigated the effects of replacement of miR-15a and miR-16-1. CLL cells transfected with these miRNA mimics exhibited a decrease in cell viability in vitro and impaired capacity for engraftment and growth in NOD/Shi-scid,γcnull (NSG) mice. No synergistic effects were observed when the two miRNA mimics were combined. The phenomena were not restricted to CLL with the del(13)(q14) lesion. Similar effects induced by miRNA mimics were seen in cells with additional chromosomal abnormalities with the exception of certain CLL clones harboring TP53 alterations. Administration of miRNA mimics to NSG mice previously engrafted with CLL clones resulted in substantial tumor regression. CLL cell transfection with miR-15a and miR-16-1-specific inhibitors resulted in increased cell viability in vitro and in an enhanced capacity of the engrafted cells to grow in NSG mice generating larger splenic nodules. These data demonstrate that the strong control by miR-15a and miR-16-1 on CLL clonal expansion is exerted also at the level of full-blown leukemia and provide indications for a miRNA-based therapeutic strategy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Chiorazzi N, Rai KR, Ferrarini M . Chronic lymphocytic leukemia. N Engl J Med 2005; 352: 804–815.

    Article  CAS  Google Scholar 

  2. Dohner H, Stilgenbauer S, James MR, Benner A, Weilguni T, Bentz M et al. 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood 1997; 89: 2516–2522.

    CAS  PubMed  Google Scholar 

  3. Neilson JR, Auer R, White D, Bienz N, Waters JJ, Whittaker JA et al. Deletions at 11q identify a subset of patients with typical CLL who show consistent disease progression and reduced survival. Leukemia 1997; 11: 1929–1932.

    Article  CAS  Google Scholar 

  4. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    Article  CAS  Google Scholar 

  5. Grever MR, Lucas DM, Dewald GW, Neuberg DS, Reed JC, Kitada S et al. Comprehensive assessment of genetic and molecular features predicting outcome in patients with chronic lymphocytic leukemia: results from the US Intergroup Phase III Trial E2997. J Clin Oncol 2007; 25: 799–804.

    Article  CAS  Google Scholar 

  6. Stilgenbauer S, Zenz T, Winkler D, Buhler A, Schlenk RF, Groner S et al. Subcutaneous alemtuzumab in fludarabine-refractory chronic lymphocytic leukemia: clinical results and prognostic marker analyses from the CLL2H study of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol 2009; 27: 3994–4001.

    Article  CAS  Google Scholar 

  7. Fischer K, Cramer P, Busch R, Bottcher S, Bahlo J, Schubert J et al. Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol 2012; 30: 3209–3216.

    Article  CAS  Google Scholar 

  8. Zenz T, Habe S, Denzel T, Mohr J, Winkler D, Buhler A et al. Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood 2009; 114: 2589–2597.

    Article  CAS  Google Scholar 

  9. Kalachikov S, Migliazza A, Cayanis E, Fracchiolla NS, Bonaldo MF, Lawton L et al. Cloning and gene mapping of the chromosome 13q14 region deleted in chronic lymphocytic leukemia. Genomics 1997; 42: 369–377.

    Article  CAS  Google Scholar 

  10. Rawstron AC, Bennett FL, O'Connor SJ, Kwok M, Fenton JA, Plummer M et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med 2008; 359: 575–583.

    Article  CAS  Google Scholar 

  11. Morabito F, Mosca L, Cutrona G, Agnelli L, Tuana G, Ferracin M et al. Clinical monoclonal B lymphocytosis versus Rai 0 chronic lymphocytic leukemia: A comparison of cellular, cytogenetic, molecular, and clinical features. Clin Cancer Res 2013; 19: 5890–5900.

    Article  CAS  Google Scholar 

  12. Liu Y, Corcoran M, Rasool O, Ivanova G, Ibbotson R, Grander D et al. Cloning of two candidate tumor suppressor genes within a 10 kb region on chromosome 13q14, frequently deleted in chronic lymphocytic leukemia. Oncogene 1997; 15: 2463–2473.

    Article  CAS  Google Scholar 

  13. Migliazza A, Bosch F, Komatsu H, Cayanis E, Martinotti S, Toniato E et al. Nucleotide sequence, transcription map, and mutation analysis of the 13q14 chromosomal region deleted in B-cell chronic lymphocytic leukemia. Blood 2001; 97: 2098–2104.

    Article  CAS  Google Scholar 

  14. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    Article  CAS  Google Scholar 

  15. Mosca L, Fabris S, Lionetti M, Todoerti K, Agnelli L, Morabito F et al. Integrative genomics analyses reveal molecularly distinct subgroups of B-cell chronic lymphocytic leukemia patients with 13q14 deletion. Clin Cancer Res 2010; 16: 5641–5653.

    Article  CAS  Google Scholar 

  16. Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 2010; 17: 28–40.

    Article  CAS  Google Scholar 

  17. Sellmann L, Scholtysik R, Kreuz M, Cyrull S, Tiacci E, Stanelle J et al. Gene dosage effects in chronic lymphocytic leukemia. Cancer Genet Cytogenet 2010; 203: 149–160.

    Article  CAS  Google Scholar 

  18. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T . Identification of novel genes coding for small expressed RNAs. Science 2001; 294: 853–858.

    Article  CAS  Google Scholar 

  19. Ghildiyal M, Zamore PD . Small silencing RNAs: an expanding universe. Nat Rev Genet 2009; 10: 94–108.

    Article  CAS  Google Scholar 

  20. Hausser J, Zavolan M . Identification and consequences of miRNA-target interactions—beyond repression of gene expression. Nat Rev Genet 2014; 15: 599–612.

    Article  CAS  Google Scholar 

  21. Ouillette P, Erba H, Kujawski L, Kaminski M, Shedden K, Malek SN . Integrated genomic profiling of chronic lymphocytic leukemia identifies subtypes of deletion 13q14. Cancer Res 2008; 68: 1012–1021.

    Article  CAS  Google Scholar 

  22. Negrini M, Cutrona G, Bassi C, Fabris S, Zagatti B, Colombo M et al. microRNAome expression in chronic lymphocytic leukemia: comparison with normal B-cell subsets and correlations with prognostic and clinical parameters. Clin Cancer Res 2014; 20: 4141–4153.

    Article  CAS  Google Scholar 

  23. Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA 2008; 105: 5166–5171.

    Article  CAS  Google Scholar 

  24. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944–13949.

    Article  CAS  Google Scholar 

  25. Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 2007; 27: 2240–2252.

    Article  CAS  Google Scholar 

  26. Allegra D, Bilan V, Garding A, Dohner H, Stilgenbauer S, Kuchenbauer F et al. Defective DROSHA processing contributes to downregulation of MiR-15/-16 in chronic lymphocytic leukemia. Leukemia 2014; 28: 98–107.

    Article  CAS  Google Scholar 

  27. Veronese A, Pepe F, Chiacchia J, Pagotto S, Lanuti P, Veschi S et al. Allele-specific loss and transcription of the miR-15a/16-1 cluster in chronic lymphocytic leukemia. Leukemia 2015; 29: 86–95.

    Article  CAS  Google Scholar 

  28. Mertens D, Wolf S, Tschuch C, Mund C, Kienle D, Ohl S et al. Allelic silencing at the tumor-suppressor locus 13q14.3 suggests an epigenetic tumor-suppressor mechanism. Proc Natl Acad Sci USA 2006; 103: 7741–7746.

    Article  CAS  Google Scholar 

  29. Raveche ES, Salerno E, Scaglione BJ, Manohar V, Abbasi F, Lin YC et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood 2007; 109: 5079–5086.

    Article  CAS  Google Scholar 

  30. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353: 1793–1801.

    Article  CAS  Google Scholar 

  31. Underbayev C, Kasar S, Ruezinsky W, Degheidy H, Schneider JS, Marti G et al. Role of mir-15a/16-1 in early B cell development in a mouse model of chronic lymphocytic leukemia. Oncotarget 2016; 7: 60986–60999.

    Article  Google Scholar 

  32. Pekarsky Y, Croce CM . Role of miR-15/16 in CLL. Cell Death Differ 2015; 22: 6–11.

    Article  CAS  Google Scholar 

  33. Morabito F, Cutrona G, Gentile M, Fabris S, Matis S, Vigna E et al. Is ZAP70 still a key prognostic factor in early stage chronic lymphocytic leukaemia? Results of the analysis from a prospective multicentre observational study. Br J Haematol 2015; 168: 455–459.

    Article  Google Scholar 

  34. Lionetti M, Fabris S, Cutrona G, Agnelli L, Ciardullo C, Matis S et al. High-throughput sequencing for the identification of NOTCH1 mutations in early stage chronic lymphocytic leukaemia: biological and clinical implications. Br J Haematol 2014; 165: 629–639.

    Article  CAS  Google Scholar 

  35. Cutrona G, Colombo M, Matis S, Fabbi M, Spriano M, Callea V et al. Clonal heterogeneity in chronic lymphocytic leukemia cells: superior response to surface IgM cross-linking in CD38, ZAP-70-positive cells. Haematologica 2008; 93: 413–422.

    Article  CAS  Google Scholar 

  36. Durig J, Ebeling P, Grabellus F, Sorg UR, Mollmann M, Schutt P et al. A novel nonobese diabetic/severe combined immunodeficient xenograft model for chronic lymphocytic leukemia reflects important clinical characteristics of the disease. Cancer Res 2007; 67: 8653–8661.

    Article  Google Scholar 

  37. Bagnara D, Kaufman MS, Calissano C, Marsilio S, Patten PE, Simone R et al. A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease. Blood 2011; 117: 5463–5472.

    Article  CAS  Google Scholar 

  38. Valdora F, Cutrona G, Matis S, Morabito F, Massucco C, Emionite L et al. A non-invasive approach to monitor chronic lymphocytic leukemia engraftment in a xenograft mouse model using ultra-small superparamagnetic iron oxide-magnetic resonance imaging (USPIO-MRI). Clin Immunol 2016; 172: 52–60.

    Article  CAS  Google Scholar 

  39. Palamarchuk A, Efanov A, Nazaryan N, Santanam U, Alder H, Rassenti L et al. 13q14 deletions in CLL involve cooperating tumor suppressors. Blood 2010; 115: 3916–3922.

    Article  CAS  Google Scholar 

  40. Kasar S, Salerno E, Yuan Y, Underbayev C, Vollenweider D, Laurindo MF et al. Systemic in vivo lentiviral delivery of miR-15a/16 reduces malignancy in the NZB de novo mouse model of chronic lymphocytic leukemia. Genes Immun 2012; 13: 109–119.

    Article  CAS  Google Scholar 

  41. Fabbri M, Bottoni A, Shimizu M, Spizzo R, Nicoloso MS, Rossi S et al. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA 2011; 305: 59–67.

    Article  CAS  Google Scholar 

  42. Lin K, Farahani M, Yang Y, Johnson GG, Oates M, Atherton M et al. Loss of MIR15A and MIR16-1 at 13q14 is associated with increased TP53 mRNA, de-repression of BCL2 and adverse outcome in chronic lymphocytic leukaemia. Br J Haematol 2014; 167: 346–355.

    Article  CAS  Google Scholar 

  43. Herling CD, Klaumunzer M, Rocha CK, Altmuller J, Thiele H, Bahlo J et al. Complex karyotypes and KRAS and POT1 mutations impact outcome in CLL after chlorambucil-based chemotherapy or chemoimmunotherapy. Blood 2016; 128: 395–404.

    Article  CAS  Google Scholar 

  44. Rossi D, Rasi S, Spina V, Bruscaggin A, Monti S, Ciardullo C et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 2013; 121: 1403–1412.

    Article  CAS  Google Scholar 

  45. Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 2013; 152: 714–726.

    Article  CAS  Google Scholar 

  46. Guieze R, Robbe P, Clifford R, de Guibert S, Pereira B, Timbs A et al. Presence of multiple recurrent mutations confers poor trial outcome of relapsed/refractory CLL. Blood 2015; 126: 2110–2117.

    Article  CAS  Google Scholar 

  47. Saleh LM, Wang W, Herman SE, Saba NS, Anastas V, Barber E et al. Ibrutinib downregulates a subset of miRNA leading to upregulation of tumor suppressors and inhibition of cell proliferation in chronic lymphocytic leukemia. Leukemia; e-pub ahead of print 19 July 2016; doi:10.1038/leu.2016.181.

  48. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 2004; 101: 11755–11760.

    Article  CAS  Google Scholar 

  49. Visone R, Rassenti LZ, Veronese A, Taccioli C, Costinean S, Aguda BD et al. Karyotype-specific microRNA signature in chronic lymphocytic leukemia. Blood 2009; 114: 3872–3879.

    Article  CAS  Google Scholar 

  50. Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 2006; 66: 11590–11593.

    Article  CAS  Google Scholar 

  51. Bresin A, Callegari E, D'Abundo L, Cattani C, Bassi C, Zagatti B et al. miR-181b as a therapeutic agent for chronic lymphocytic leukemia in the Emicro-TCL1 mouse model. Oncotarget 2015; 6: 19807–19818.

    Article  Google Scholar 

  52. Visone R, Veronese A, Rassenti LZ, Balatti V, Pearl DK, Acunzo M et al. miR-181b is a biomarker of disease progression in chronic lymphocytic leukemia. Blood 2011; 118: 3072–3079.

    Article  CAS  Google Scholar 

  53. Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G, Calin GA . microRNA therapeutics in cancer—an emerging concept. EBioMedicine 2016; 12: 34–42.

    Article  Google Scholar 

Download references

Acknowledgements

In addition to the authors listed, the following investigators participated in this study as part of the GISL—Gruppo Italiano Studio Linfomi: Gianni Quintana, Divisione di Ematologia, Presidio Ospedaliero ‘A. Perrino’, Brindisi; Giovanni Bertoldero, Dipartimento di Oncologia, Ospedale Civile, Noale, Venezia; Paolo Di Tonno, Dipartimento di Ematologia, Venere, Bari; Robin Foà and Francesca R Mauro, Divisione di Ematologia, Università La Sapienza, Roma; Nicola Di Renzo, Unità di Ematologia, Ospedale Vito Fazzi, Lecce; Maria Cristina Cox, Ematologia, A.O. Sant’Andrea, Università La Sapienza, Roma; Stefano Molica, Dipartimento di Oncologia ed Ematologia, Pugliese-Ciaccio Hospital, Catanzaro; Attilio Guarini, Unità di Ematologia e Trapianto di Cellule Staminali, Istituto di Oncologia ‘Giovanni Paolo II’, Bari; Antonio Abbadessa, U.O.C. di Oncoematologia Ospedale ‘S. Anna e S. Sebastiano’, Caserta; Francesco Iuliano, U.O.C. di Oncologia, Ospedale Giannettasio, Rossano Calabro, Cosenza; Omar Racchi, Ospedale Villa Scassi Sampierdarena, Genova; Mauro Spriano, Ematologia, A.O. San Martino, Genova; Felicetto Ferrara, Divisione di Ematologia, Ospedale Cardarelli, Napoli; Monica Crugnola, Ematologia, CTMO, Azienda Ospedaliera Universitaria di Parma; Alessandro Andriani, Dipartimento di Ematologia, Ospedale Nuovo Regina Margherita, Roma; Nicola Cascavilla, Unità di Ematologia e Trapianto di Cellule Staminali, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo; Lucia Ciuffreda, Unità di Ematologia, Ospedale San Nicola Pellegrino, Trani; Graziella Pinotti, U.O. Oncologia Medica, Ospedale di Circolo Fondazione Macchi, Varese; Anna Pascarella, Unità Operativa di Ematologia, Ospedale dell'Angelo, Venezia-Mestre; Maria Grazia Lipari, Divisione di Ematologia, Ospedale Policlinico, Palermo, Francesco Merli, Unità Operativa di Ematologia, A.O.S. Maria Nuova, Reggio Emilia; Luca Baldini Istituto di Ricovero e Cura a Carattere Scientifico Cà Granda-Maggiore Policlinico, Milano; Caterina Musolino, Divisione di Ematologia, Università di Messina; Agostino Cortelezzi, Ematologia and CTMO, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano; Francesco Angrilli, Dipartimento di Ematologia, Ospedale Santo Spirito, Pescara; Ugo Consoli, U.O.S. di Emato-Oncologia, Ospedale Garibaldi-Nesima, Catania; Gianluca Festini, Centro di Riferimento Ematologico-Seconda Medicina, Azienda Ospedaliero-Universitaria, Ospedali Riuniti, Trieste; Giuseppe Longo, Unità di Ematologia, Ospedale San Vincenzo, Taormina; Daniele Vallisa and Annalisa Arcari, Unità di Ematologia, Dipartimento di Onco-Ematologia, Guglielmo da Saliceto Hospital, Piacenza; Francesco Di Raimondo and Annalisa Chiarenza, Divisione di Ematologia, Università di Catania Ospedale Ferrarotto, Catania; Iolanda Vincelli, Unità di Ematologia, A.O. of Reggio Calabria; Donato Mannina, Divisione di Ematologia, Ospedale Papardo, Messina, Italy. This work was supported by Associazione Italiana Ricerca sul Cancro (AIRC) Grant 5 x mille n.9980, (to MF, FM, AN, PT and MN); AIRC I.G. n.14326 (to MF), n.10136 and 16722 (AN), n.15426 (to FF). AIRC and Fondazione CaRiCal co-financed Multi Unit Regional Grant 2014 n.16695 (to FM). Italian Ministry of Health 5x1000 funds (to SZ and FF). AGR was supported by Associazione Italiana contro le Leucemie-Linfomi-Mielomi (AIL) Cosenza—Fondazione Amelia Scorza (FAS). SM, CM, MC, LE and SB were supported by AIRC.

Author contributions

Conception and design: GC, GB, FF and MF; Development of methodology: GC, SM, CM, GB, MC, DR, RM, SS, SB, LE and SF; Acquisition of data: GC, SM, LE, MC, GB, MM, SF, SS, DR, RM, FV, SZ, FM and MN; Analysis and interpretation of data: GC, SM, GB, CM, AN, SS, MC, SF, CEN, MC, FR, LB, FF, SZ, MN, PT, MG, MT, MF and FM; Writing, review, and/or revision of the manuscript: GC, AGR, MN, PT, AN, FF and MF; Study supervision: GC, FF and MF. All authors reviewed and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Fais.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cutrona, G., Matis, S., Colombo, M. et al. Effects of miRNA-15 and miRNA-16 expression replacement in chronic lymphocytic leukemia: implication for therapy. Leukemia 31, 1894–1904 (2017). https://doi.org/10.1038/leu.2016.394

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.394

This article is cited by

Search

Quick links