Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

BIM upregulation and ROS-dependent necroptosis mediate the antitumor effects of the HDACi Givinostat and Sorafenib in Hodgkin lymphoma cell line xenografts

Abstract

Relapsed/refractory Hodgkin’s lymphoma (HL) is an unmet medical need requiring new therapeutic options. Interactions between the histone deacetylase inhibitor Givinostat and the RAF/MEK/ERK inhibitor Sorafenib were examined in HDLM-2 and L-540 HL cell lines. Exposure to Givinostat/Sorafenib induced a synergistic inhibition of cell growth (range, 70–80%) and a marked increase in cell death (up to 96%) due to increased H3 and H4 acetylation and strong mitochondrial injury. Gene expression profiling indicated that the synergistic effects of Givinostat/Sorafenib treatment are associated with the modulation of cell cycle and cell death pathways. Exposure to Givinostat/Sorafenib resulted in sustained production of reactive oxygen species (ROS) and activation of necroptotic cell death. The necroptosis inhibitor Necrostatin-1 prevented Givinostat/Sorafenib-induced ROS production, mitochondrial injury, activation of BH3-only protein BIM and cell death. Knockdown experiments identified BIM as a key signaling molecule that mediates Givinostat/Sorafenib-induced oxidative death of HL cells. Furthermore, in vivo xenograft studies demonstrated a 50% reduction in tumor burden (P<0.0001), a 5- to 15-fold increase in BIM expression (P0.0001) and a fourfold increase in tumor necrosis in Givinostat/Sorafenib-treated animals compared with mice that received single agents. These results provide a rationale for exploring Givinostat/Sorafenib combination in relapsed/refractory HL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Lowry L, Hoskin P, Linch D . Developments in the management of Hodgkin's lymphoma. Lancet 2010; 375: 786–788.

    Article  Google Scholar 

  2. Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 2012; 62: 220–241.

    Article  Google Scholar 

  3. Crump M . Management of Hodgkin lymphoma in relapse after autologous stem cell transplant. Hematology Am Soc Hematol Educ Program 2008; 1: 326–333.

    Article  Google Scholar 

  4. Moskowitz AJ, Perales M-A, Kewalramani T, Yahalom J, Castro-Malaspina H, Zhang Z et al. Outcomes for patients who fail high dose chemoradiotherapy and autologous stem cell rescue for relapsed and primary refractory Hodgkin lymphoma. Br J Haemato 2009; 146: 158–163.

    Article  Google Scholar 

  5. De J, Brown RE . Tissue-microarray based immunohistochemical analysis of survival pathways in nodular sclerosing classical Hodgkin lymphoma as compared with Non-Hodgkin's lymphoma. Int J Clin Exp Med 2010; 3: 55–68.

    CAS  Google Scholar 

  6. Zheng B, Fiumara P, Li YV, Georgakis G, Snell V, Younes M et al. MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival. Blood 2003; 102: 1019–1027.

    Article  CAS  Google Scholar 

  7. Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 2010; 363: 1812–1821.

    Article  CAS  Google Scholar 

  8. Younes A . Beyond chemotherapy: new agents for targeted treatment of lymphoma. Nat Rev Clin Oncol 2011; 8: 85–96.

    Article  CAS  Google Scholar 

  9. Re D, Thomas RK, Behringer K, Diehl V . From Hodgkin disease to Hodgkin lymphoma: biologic insights and therapeutic potential. Blood 2005; 105: 4553–4560.

    Article  CAS  Google Scholar 

  10. Boll B, Borchmann P, Diehl V . Emerging drugs for Hodgkin's lymphoma. Expert Opin Emerg Drugs 2010; 15: 585–595.

    Article  Google Scholar 

  11. Younes A, Oki Y, Bociek RG, Kuruvilla J, Fanale M, Neelapu S et al. Mocetinostat for relapsed classical Hodgkin's lymphoma: an open-label, single-arm, phase 2 trial. Lancet Oncol 2011; 12: 1222–1228.

    Article  CAS  Google Scholar 

  12. Younes A, Sureda A, Ben-Yehuda D, Zinzani PL, Ong TC, Prince HM et al. Panobinostat in patients with relapsed/refractory Hodgkin's lymphoma after autologous stem-cell transplantation: results of a phase II study. J Clin Oncol 2012; 30: 2197–2203.

    Article  CAS  Google Scholar 

  13. Frenzel A, Grespi F, Chmelewskij W, Villunger A . Bcl2 family proteins in carcinogenesis and the treatment of cancer. Apoptosis 2009; 14: 584–596.

    Article  CAS  Google Scholar 

  14. Youle RJ, Strasser A . The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008; 9: 47–59.

    Article  CAS  Google Scholar 

  15. Domina AM, Vrana JA, Gregory MA, Hann SR, Craig RW . MCL1 is phosphorylated in the PEST region and stabilized upon ERK activation in viable cells, and at additional sites with cytotoxic okadaic acid or taxol. Oncogene 2004; 23: 5301–5315.

    Article  CAS  Google Scholar 

  16. Chakraborty AR, Robey RW, Luchenko VL, Zhan Z, Piekarz RL, Gillet JP et al. MAPK pathway activation leads to Bim loss and histone deacetylase inhibitor resistance: rationale to combine romidepsin with an MEK inhibitor. Blood 2013; 121: 4115–4125.

    Article  CAS  Google Scholar 

  17. Dickinson M, Johnstone RW, Prince HM . Histone deacetylase inhibitors: potential targets responsible for their anti-cancer effect. Invest New Drugs 2010; 28 (Suppl 1): S3–S20.

    Article  Google Scholar 

  18. Petruccelli LA, Dupere-Richer D, Pettersson F, Retrouvey H, Skoulikas S, Miller WH Jr. . Vorinostat induces reactive oxygen species and DNA damage in acute myeloid leukemia cells. PLoS One 2011; 6: e20987.

    Article  CAS  Google Scholar 

  19. Rahmani M, Yu C, Reese E, Ahmed W, Hirsch K, Dent P et al. Inhibition of PI-3 kinase sensitizes human leukemic cells to histone deacetylase inhibitor-mediated apoptosis through p44/42 MAP kinase inactivation and abrogation of p21(CIP1/WAF1) induction rather than AKT inhibition. Oncogene 2003; 22: 6231–6242.

    Article  CAS  Google Scholar 

  20. Gao N, Rahmani M, Shi X, Dent P, Grant S . Synergistic antileukemic interactions between 2-medroxyestradiol (2-ME) and histone deacetylase inhibitors involve Akt down-regulation and oxidative stress. Blood 2006; 107: 241–249.

    Article  CAS  Google Scholar 

  21. Rasheed W, Bishton M, Johnstone RW, Prince HM . Histone deacetylase inhibitors in lymphoma and solid malignancies. Expert Rev Anticancer Ther 2008; 8: 413–432.

    Article  CAS  Google Scholar 

  22. Garcia-Manero G, Yang H, Bueso-Ramos C, Ferrajoli A, Cortes J, Wierda WG et al. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood 2008; 111: 1060–1066.

    Article  CAS  Google Scholar 

  23. Olsen EA, Kim YH, Kuzel TM, Pacheco TR, Foss FM, Parker S et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol 2007; 25: 3109–3115.

    Article  CAS  Google Scholar 

  24. Piekarz RL, Frye R, Turner M, Wright JJ, Allen SL, Kirschbaum MH et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol 2009; 27: 5410–5417.

    Article  CAS  Google Scholar 

  25. Bots M, Johnstone RW . Rational combinations using HDAC inhibitors. Clin Cancer Res 2009; 15: 3970–3977.

    Article  CAS  Google Scholar 

  26. Münster P, Marchion D, Bicaku E, Schmitt M, Lee JH, DeConti R et al. Phase I trial of histone deacetylase inhibition by valproic acid followed by the topoisomerase II inhibitor epirubicin in advanced solid tumors: a clinical and translational study. J Clin Oncol 2007; 25: 1979–1985.

    Article  Google Scholar 

  27. Carraway HE, Gore SD . Addition of histone deacetylase inhibitors in combination therapy. J Clin Oncol 2007; 25: 1955–1956.

    Article  Google Scholar 

  28. Marchion DC, Bicaku E, Daud AI, Richon V, Sullivan DM, Munster PN . Sequence-specific potentiation of topoisomerase II inhibitors by the histone deacetylase inhibitor suberoylanilide hydroxamic acid. J Cell Biochem 2004; 92: 223–237.

    Article  CAS  Google Scholar 

  29. Nimmanapalli R, Fuino L, Stobaugh C, Richon V, Bhalla K . Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood 2003; 101: 3236–3239.

    Article  CAS  Google Scholar 

  30. Kim MS, Blake M, Baek JH, Kohlhagen G, Pommier Y, Carrier F . Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res 2003; 63: 7291–7300.

    CAS  Google Scholar 

  31. Diehl V, Kirchner HH, Schaadt M, Fonatsch C, Stein H, Gerdes J et al. Hodgkin's disease: establishment and characterization of four in vitro cell lies. J Cancer Res Clin Oncol 1981; 101: 111–124.

    Article  CAS  Google Scholar 

  32. Drexler HG, Gedicke G, Lok MS, Diehl V, Minowada J . Hodgkin's disease derived cell lines HDLM-2 and L-428: comparison of morphology, immunological and isoenzyme profiles. Leuk Res 1986; 10: 487–500.

    Article  CAS  Google Scholar 

  33. Locatelli SL, Giacomini A, Guidetti A, Cleris L, Mortarini R, Anichini A et al. Perifosine and sorafenib combination induces mitochondrial cell death and antitumor effects in NOD/SCID mice with Hodgkin lymphoma cell line xenografts. Leukemia 2013; 27: 1677–1687.

    Article  CAS  Google Scholar 

  34. Carlo-Stella C, Di Nicola M, Turco MC, Cleris L, Lavazza C, Longoni P et al. The anti-human leukocyte antigen-DR monoclonal antibody 1D09C3 activates the mitochondrial cell death pathway and exerts a potent antitumor activity in lymphoma-bearing nonobese diabetic/severe combined immunodeficient mice. Cancer Res 2006; 66: 1799–1808.

    Article  CAS  Google Scholar 

  35. Carlo-Stella C, Lavazza C, Nicola MD, Cleris L, Longoni P, Milanesi M et al. Antitumor activity of human CD34(+) cells expressing membrane-bound tumor necrosis factor-related apoptosis-inducing ligand. Hum Gene Ther 2006; 17: 1225–1240.

    Article  CAS  Google Scholar 

  36. Chou TC, Talalay P . Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  Google Scholar 

  37. Pan G, Bauer JH, Haridas V, Wang S, Liu D, Yu G et al. Identification and functional characterization of DR6, a novel death domain-containing TNF receptor. FEBS Lett 1998; 431: 351–356.

    Article  CAS  Google Scholar 

  38. Franke JC, Plotz M, Prokop A, Geilen CC, Schmalz HG, Eberle J . New caspase-independent but ROS-dependent apoptosis pathways are targeted in melanoma cells by an iron-containing cytosine analogue. Biochem Pharmacol 2010; 79: 575–586.

    Article  CAS  Google Scholar 

  39. Xu WS, Parmigiani RB, Marks PA . Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 2007; 26: 5541–5552.

    Article  CAS  Google Scholar 

  40. Coriat R, Nicco C, Chereau C, Mir O, Alexandre J, Ropert S et al. Sorafenib-induced hepatocellular carcinoma cell death depends on reactive oxygen species production in vitro and in vivo. Mol Cancer Ther 2012; 11: 2284–2293.

    Article  CAS  Google Scholar 

  41. Jaattela M, Tschopp J . Caspase-independent cell death in T lymphocytes. Nat Immunol 2003; 4: 416–423.

    Article  Google Scholar 

  42. Lee BC, Park BH, Kim SY, Lee YJ . Role of Bim in diallyl trisulfide-induced cytotoxicity in human cancer cells. J Cell Biochem 2011; 112: 118–127.

    Article  CAS  Google Scholar 

  43. Moskowitz AJ . Novel agents in Hodgkin lymphoma. Curr Oncol Rep 2012; 14: 419–423.

    Article  CAS  Google Scholar 

  44. Carlo-Stella C, Locatelli SL, Giacomini A, Cleris L, Saba E, Righi M et al. Sorafenib inhibits lymphoma xenografts by targeting MAPK/ERK and AKT pathways in tumor and vascular cells. PLoS One 2013; 8: e61603.

    Article  CAS  Google Scholar 

  45. Guidetti A, Carlo-Stella C, Locatelli SL, Malorni W, Pierdominici M, Barbati C et al. Phase II study of sorafenib in patients with relapsed or refractory lymphoma. Br J Haematol 2012; 158: 108–119.

    Article  CAS  Google Scholar 

  46. Yu C, Subler M, Rahmani M, Reese E, Krystal G, Conrad D et al. Induction of apoptosis in BCR/ABL+ cells by histone deacetylase inhibitors involves reciprocal effects on the RAF/MEK/ERK and JNK pathways. Cancer Biol Ther 2003; 2: 544–551.

    Article  CAS  Google Scholar 

  47. Rahmani M, Reese E, Dai Y, Bauer C, Payne SG, Dent P et al. Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Res 2005; 65: 2422–2432.

    Article  CAS  Google Scholar 

  48. Bhalla S, Balasubramanian S, David K, Sirisawad M, Buggy J, Mauro L et al. PCI-24781 induces caspase and reactive oxygen species-dependent apoptosis through NF-kappaB mechanisms and is synergistic with bortezomib in lymphoma cells. Clin Cancer Res 2009; 15: 3354–3365.

    Article  CAS  Google Scholar 

  49. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G . Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 2010; 11: 700–714.

    Article  CAS  Google Scholar 

  50. Wu W, Liu P, Li J . Necroptosis: an emerging form of programmed cell death. Crit Rev Oncol Hematol 2012; 82: 249–258.

    Article  Google Scholar 

  51. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M . Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005; 120: 649–661.

    Article  CAS  Google Scholar 

  52. Putcha GV, Le S, Frank S, Besirli CG, Clark K, Chu B et al. JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 2003; 38: 899–914.

    Article  CAS  Google Scholar 

  53. Schneiders UM, Schyschka L, Rudy A, Vollmar AM . BH3-only proteins Mcl-1 and Bim as well as endonuclease G are targeted in spongistatin 1-induced apoptosis in breast cancer cells. Mol Cancer Ther 2009; 8: 2914–2925.

    Article  CAS  Google Scholar 

  54. Lurje G, Lenz HJ . EGFR signaling and drug discovery. Oncology 2009; 77: 400–410.

    Article  CAS  Google Scholar 

  55. Alao JP, Stavropoulou AV, Lam EW, Coombes RC, Vigushin DM . Histone deacetylase inhibitor, trichostatin A induces ubiquitin-dependent cyclin D1 degradation in MCF-7 breast cancer cells. Mol Cancer 2006; 5: 8.

    Article  Google Scholar 

  56. Fu M, Rao M, Bouras T, Wang C, Wu K, Zhang X et al. Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment. J Biol Chem 2005; 280: 16934–16941.

    Article  CAS  Google Scholar 

  57. Balmanno K, Cook SJ . Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ 2009; 16: 368–377.

    Article  CAS  Google Scholar 

  58. Longo PG, Laurenti L, Gobessi S, Sica S, Leone G, Efremov DG . The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood 2008; 111: 846–855.

    Article  CAS  Google Scholar 

  59. Tiacci E, Doring C, Brune V, van Noesel CJ, Klapper W, Mechtersheimer G et al. Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma. Blood 2012; 120: 4609–4620.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ministry of Health (Ricerca Finalizzata 2010 to CC-S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Carlo-Stella.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Locatelli, S., Cleris, L., Stirparo, G. et al. BIM upregulation and ROS-dependent necroptosis mediate the antitumor effects of the HDACi Givinostat and Sorafenib in Hodgkin lymphoma cell line xenografts. Leukemia 28, 1861–1871 (2014). https://doi.org/10.1038/leu.2014.81

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.81

This article is cited by

Search

Quick links