Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sensitivity and Resistance to Therapy

The WHIM-like CXCR4S338X somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s Macroglobulinemia

Abstract

CXCR4WHIM somatic mutations are common Waldenstrom’s Macroglobulinemia (WM), and are associated with clinical resistance to ibrutinib. We engineered WM cells to express the most common WHIM (Warts, Hypogammaglobulinemia, Infections and Myelokathexis), CXCRS338X mutation in WM. Following SDF-1a stimulation, CXCR4S338X WM cells exhibited decreased receptor internalization, enhanced and sustained AKT kinase (AKT) and extracellular regulated kinase (ERK) signaling, decreased poly (ADP-ribose) polymerase and caspase 3 cleavage, and decreased Annexin V staining versus CXCR4 wild-type (WT) cells. CXCR4S338X-related signaling and survival effects were blocked by the CXCR4 inhibitor AMD3100. SDF-1a-treated CXCR4S338X WM cells showed sustained AKT and ERK activation and decreased apoptotic changes versus CXCR4WT cells following ibrutinib treatment, findings which were also reversed by AMD3100. AKT or ERK antagonists restored ibrutinib-triggered apoptotic changes in SDF-1a-treated CXCR4S338X WM cells demonstrating their role in SDF-1a-mediated ibrutinib resistance. Enhanced bone marrow pAKT staining was also evident in CXCR4WHIM versus CXCR4WT WM patients, and remained active despite ibrutinib therapy in CXCR4WHIM patients. Last, CXCR4S338X WM cells showed varying levels of resistance to other WM relevant therapeutics, including bendamustine, fludarabine, bortezomib and idelalisib in the presence of SDF-1a. These studies demonstrate a functional role for CXCR4WHIM mutations, and provide a framework for investigation of CXCR4 inhibitors in WM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med 2012; 367: 826–833.

    Article  CAS  PubMed  Google Scholar 

  2. Hunter ZR, Xu L, Yang G, Zhou Y, Liu X, Cao Y et al. The genomic landscape of Waldenstöm’s Macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood 2013; 123: 1637–1646.

    Article  PubMed  Google Scholar 

  3. Xu L, Hunter ZR, Yang G, Zhou Y, Cao Y, Liu X et al. MYD88 L265P in Waldenstrom macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood 2013; 121: 2051–2058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Varettoni M, Arcaini L, Zibellini S, Boveri E, Rattotti S, Pascutto C et al. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom’s macroglobulinemia and related lymphoid neoplasms. Blood 2013; 121: 2522–2528.

    Article  CAS  PubMed  Google Scholar 

  5. Jimenez C, Sebastian E, Del Carmen Chillon M, Giraldo P, Mariano Hernández J, Escalante F et al. MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenstrom’s macroglobulinemia. Leukemia 2013; 27: 1722–1728.

    Article  CAS  PubMed  Google Scholar 

  6. Poulain S, Roumier C, Decambron A, Renneville A, Herbaux C, Bertrand E et al. MYD88 L265P mutation in Waldenstrom’s macroglobulinemia. Blood 2013; 121: 4504–4511.

    Article  CAS  PubMed  Google Scholar 

  7. Roccaro A, Sacco A, Jiminez C, Maiso P, Moschetta M, Mishima Y et al. A novel activating mutation of CXCR4 plays a crucial role in Waldenstrom Macroglobulinemia biology. Blood 2013; 122, Abstract 272.

  8. Treon SP, Cao Y, Xu L, Yang G, Liu X, Hunter ZR . Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom’s Macroglobulinemia. Blood 2014; 123: 2791–2796.

    Article  CAS  PubMed  Google Scholar 

  9. Yang G, Zhou Y, Liu X, Xu L, Cao Y, Manning RJ et al. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenstrom macroglobulinemia. Blood 2013; 122: 1222–1232.

    Article  CAS  PubMed  Google Scholar 

  10. Dotta L, Tassone L, Badolato R . Clinical and genetic features of Warts, Hypogammaglobulinemia, Infections and Myelokathexis (WHIM) syndrome. Curr Mol Med 2011; 11: 317–325.

    Article  CAS  PubMed  Google Scholar 

  11. Busillo JM, Benovic JL . Regulation of CXCR4 signaling. Biochim Biophys Acta 2007; 1768: 952–963.

    Article  CAS  PubMed  Google Scholar 

  12. Busillo JM, Amando S, Sengupta R, Meucci O, Bouvier M, Benovic JL . Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling. J Biol Chem 2010; 285: 7805–7817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bam R, Ling W, Khan S, Pennisi A, Venkateshaiah SU, Li X et al. Role of Bruton's tyrosine kinase in myeloma cell migration and induction of bone disease. Am J Hematol 2013; 88: 463–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ngo HT, Leleu X, Lee J, Jia X, Melhem M, Runnels J et al. SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia. Blood 2008; 112: 150–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 2011; 117: 6287–6296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Davies BR, Greenwood H, Dudley P, Crafter C, Yu DH, Zhang J et al. Preclinical pharmacology of AZD5363, an inhibitor of AKT: pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background. Mol Cancer Ther 2012; 11: 873–887.

    Article  CAS  PubMed  Google Scholar 

  17. Okuzumi T, Fiedler D, Zhang C, Gray DC, Aizenstein B, Hoffman R et al. Inhibitor hijacking of Akt activation. Nat Chem Biol 2009; 5: 484–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Treon SP, Tripsas C, Yang G, Cao Y, Xu L, Hunter ZR et al. A prospective multicenter study of the bruton’s tyrosine kinase inhibitor ibrutinib in patients with relapsed or refractory Waldenstrom’s Macroglobulinemia. Proc. Am Soc Hematol Blood 2013; 122: 251.

    Google Scholar 

  19. Leleu X, Jia X, Runnels J, Ngo HT, Moreau AS, Farag M et al. The Akt pathway regulates survival and homing in Waldenstrom macroglobulinemia. Blood 2007; 110: 4417–4426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tai YT, Chang BY, Kong SY, Fulciniti M, Yang G, Calle Y et al. Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood 2012; 120: 1877–1887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leleu X, Eeckhoute J, Jia X, Roccaro AM, Moreau AS, Farag M et al. Targeting NF-kappaB in Waldenstrom macroglobulinemia. Blood 2008; 111: 5068–5077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McDermott DH, Lopez J, Deng F, Liu Q, Ojode T, Chen H et al. AMD3100 is a potent antagonist at CXCR4(R334X), a hyperfunctional mutant chemokine receptor and cause of WHIM syndrome. J Cell Mol Med 2011; 15: 2071–2081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McDermott DH, Liu Q, Ulrick J, Kwatemaa N, Anaya-O'Brien S, Penzak SR et al. The CXCR4 antagonist plerixafor corrects panleukopenia in patients with WHIM syndrome. Blood 2011; 118: 4957–4962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Balabanian K, Lagane B, Pablos JL, Laurent L, Planchenault T, Verola O et al. WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood 2005; 105: 2449–2457.

    Article  CAS  PubMed  Google Scholar 

  25. Gopal AK, Kahl BS, de Vos S, Wagner-Johnston ND, Schuster SJ, Jurczak WJ et al. PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med 2014; 370: 1008–1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is dedicated in memory of Dr Nicole Muller-Berat Killman, Editor in Chief of Leukemia, whose personal and caring nature, exemplary scientific aptitude and advancement of knowledge to benefit cancer patients through judicious peer review will be missed. The authors also acknowledge the generous support of the Peter and Helen Bing Foundation, the D’Amato Family Fund for Genomic Discovery, the Edward and Linda Nelson Fund for WM Research and the WM patients who provided their samples in support of these studies. Findings of this study were presented at the annual meeting of the American Society for Hematology in 2012 and 2013.

Author contributions

YC, ZRH and SPT conceived and designed the experiments, and wrote the manuscript. YC, ZRH and SPT performed the data analysis. LX, YC, XL, GY, NT and JC performed experiments. CJP, SK, JJC provided patient samples. SR performed immunohistochemistry studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S P Treon.

Ethics declarations

Competing interests

SPT received research funding and consulting fees from Pharmacyclics Inc. and Janssen Pharmaceuticals Inc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Hunter, Z., Liu, X. et al. The WHIM-like CXCR4S338X somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s Macroglobulinemia. Leukemia 29, 169–176 (2015). https://doi.org/10.1038/leu.2014.187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.187

This article is cited by

Search

Quick links