Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

A role for reactive oxygen species in JAK2V617F myeloproliferative neoplasm progression

Abstract

Although other mutations may predate the acquisition of the JAK2V617F mutation, the latter is sufficient to drive the disease phenotype observed in BCR-ABL-negative myeloproliferative neoplasms (MPNs). One of the consequences of JAK2V617F is genetic instability that could explain JAK2V617F-mediated MPN progression and heterogeneity. Here, we show that JAK2V617F induces the accumulation of reactive oxygen species (ROS) in the hematopoietic stem cell compartment of a knock-in (KI) mouse model and in patients with JAK2V617F MPNs. JAK2V617F-dependent ROS elevation was partly mediated by an AKT-induced decrease in catalase expression and was accompanied by an increased number of 8-oxo-guanines and DNA double-strand breaks (DSBs). Moreover, there was evidence for a mitotic recombination event in mice resulting in loss of heterozygosity of Jak2V617F. Mice engrafted with 30% of Jak2V617F KI bone marrow (BM) cells developed a polycythemia vera-like disorder. Treatment with the anti-oxidant N-acetylcysteine (NAC) substantially restored blood parameters and reduced damages to DNA. Furthermore, NAC induced a marked decrease in splenomegaly with reduction in the frequency of the Jak2V617F-positive hematopoietic progenitors in BM and spleen. Altogether, overproduction of ROS is a mediator of JAK2V617F-induced DNA damages that promote disease progression. Targeting ROS accumulation might prevent the development of JAK2V617F MPNs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.

    Article  CAS  Google Scholar 

  2. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    Article  CAS  Google Scholar 

  3. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    Article  CAS  Google Scholar 

  4. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.

    Article  CAS  Google Scholar 

  5. Lacout C, Pisani DF, Tulliez M, Gachelin FM, Vainchenker W, Villeval JL . JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 2006; 108: 1652–1660.

    Article  CAS  Google Scholar 

  6. Marty C, Lacout C, Martin A, Hasan S, Jacquot S, Birling MC et al. Myeloproliferative neoplasm induced by constitutive expression of JAK2V617F in knock-in mice. Blood 2010; 116: 783–787.

    Article  CAS  Google Scholar 

  7. Shide K, Shimoda HK, Kumano T, Karube K, Kameda T, Takenaka K et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia 2008; 22: 87–95.

    Article  CAS  Google Scholar 

  8. Tiedt R, Coers J, Ziegler S, Wiestner A, Hao-Shen H, Bornmann C et al. Pronounced thrombocytosis in transgenic mice expressing reduced levels of Mpl in platelets and terminally differentiated megakaryocytes. Blood 2009; 113: 1768–1777.

    Article  CAS  Google Scholar 

  9. Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG . Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 2006; 107: 4274–4281.

    Article  CAS  Google Scholar 

  10. Dupont S, Masse A, James C, Teyssandier I, Lecluse Y, Larbret F et al. The JAK2 617V>F mutation triggers erythropoietin hypersensitivity and terminal erythroid amplification in primary cells from patients with polycythemia vera. Blood 2007; 110: 1013–1021.

    Article  CAS  Google Scholar 

  11. Godfrey AL, Chen E, Pagano F, Ortmann CA, Silber Y, Bellosillo B et al. JAK2V617F homozygosity arises commonly and recurrently in PV and ET, but PV is characterized by expansion of a dominant homozygous subclone. Blood 2012; 120: 2704–2707.

    Article  CAS  Google Scholar 

  12. Tiedt R, Hao-Shen H, Sobas MA, Looser R, Dirnhofer S, Schwaller J et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 2008; 111: 3931–3940.

    Article  CAS  Google Scholar 

  13. Gelsi-Boyer V, Trouplin V, Adelaide J, Bonansea J, Cervera N, Carbuccia N et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol 2009; 145: 788–800.

    Article  CAS  Google Scholar 

  14. Lasho TL, Jimma T, Finke CM, Patnaik M, Hanson CA, Ketterling RP et al. SRSF2 mutations in primary myelofibrosis: significant clustering with IDH mutations and independent association with inferior overall and leukemia-free survival. Blood 2012; 120: 4168–4171.

    Article  CAS  Google Scholar 

  15. Shih AH, Abdel-Wahab O, Patel JP, Levine RL . The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 2012; 12: 599–612.

    Article  CAS  Google Scholar 

  16. Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA . New mutations and pathogenesis of myeloproliferative neoplasms. Blood 2011; 118: 1723–1735.

    Article  CAS  Google Scholar 

  17. Koptyra M, Falinski R, Nowicki MO, Stoklosa T, Majsterek I, Nieborowska-Skorska M et al. BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood 2006; 108: 319–327.

    Article  CAS  Google Scholar 

  18. Sallmyr A, Tomkinson AE, Rassool FV . Up-regulation of WRN and DNA ligase IIIalpha in chronic myeloid leukemia: consequences for the repair of DNA double-strand breaks. Blood 2008; 112: 1413–1423.

    Article  CAS  Google Scholar 

  19. Walz C, Crowley BJ, Hudon HE, Gramlich JL, Neuberg DS, Podar K et al. Activated Jak2 with the V617F point mutation promotes G1/S phase transition. J Biol Chem 2006; 281: 18177–18183.

    Article  CAS  Google Scholar 

  20. Plo I, Nakatake M, Malivert L, de Villartay JP, Giraudier S, Villeval JL et al. JAK2 stimulates homologous recombination and genetic instability: potential implication in the heterogeneity of myeloproliferative disorders. Blood 2008; 112: 1402–1412.

    Article  CAS  Google Scholar 

  21. Sallmyr A, Fan J, Rassool FV . Genomic instability in myeloid malignancies: increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. Cancer Lett 2008; 270: 1–9.

    Article  CAS  Google Scholar 

  22. Hasan S, Lacout C, Marty C, Cuingnet M, Solary E, Vainchenker W et al. JAK2V617F expression in mice amplifies hematopoietic stem cells and gives them a competitive advantage that is hampered by IFNα. Blood, submitted 2013.

  23. Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 2004; 431: 997–1002.

    Article  CAS  Google Scholar 

  24. Jang YY, Sharkis SJ . A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 2007; 110: 3056–3063.

    Article  CAS  Google Scholar 

  25. Tefferi A, Vardiman JW . Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008; 22: 14–22.

    Article  CAS  Google Scholar 

  26. Lukas J, Lukas C, Bartek J . More than just a focus: the chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol 2011; 13: 1161–1169.

    Article  CAS  Google Scholar 

  27. Barosi G, Bergamaschi G, Marchetti M, Vannucchi AM, Guglielmelli P, Antonioli E et al. JAK2 V617F mutational status predicts progression to large splenomegaly and leukemic transformation in primary myelofibrosis. Blood 2007; 110: 4030–4036.

    Article  CAS  Google Scholar 

  28. Yalcin S, Marinkovic D, Mungamuri SK, Zhang X, Tong W, Sellers R et al. ROS-mediated amplification of AKT/mTOR signalling pathway leads to myeloproliferative syndrome in Foxo3(−/−) mice. EMBO J 2010; 29: 4118–4131.

    Article  CAS  Google Scholar 

  29. Nieborowska-Skorska M, Kopinski PK, Ray R, Hoser G, Ngaba D, Flis S et al. Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood 2012; 119: 4253–4263.

    Article  CAS  Google Scholar 

  30. Reddy MM, Fernandes MS, Salgia R, Levine RL, Griffin JD, Sattler M . NADPH oxidases regulate cell growth and migration in myeloid cells transformed by oncogenic tyrosine kinases. Leukemia 2011; 25: 281–289.

    Article  CAS  Google Scholar 

  31. Nakatake M, Monte-Mor B, Debili N, Casadevall N, Ribrag V, Solary E et al. JAK2(V617F) negatively regulates p53 stabilization by enhancing MDM2 via La expression in myeloproliferative neoplasms. Oncogene 2012; 31: 1323–1333.

    Article  CAS  Google Scholar 

  32. Zhao R, Follows GA, Beer PA, Scott LM, Huntly BJ, Green AR et al. Inhibition of the Bcl-xL deamidation pathway in myeloproliferative disorders. N Engl J Med 2008; 359: 2778–2789.

    Article  CAS  Google Scholar 

  33. Cummings WJ, Yabuki M, Ordinario EC, Bednarski DW, Quay S, Maizels N . Chromatin structure regulates gene conversion. PLoS Biol 2007; 5: e246.

    Article  Google Scholar 

  34. Dawson MA, Bannister AJ, Gottgens B, Foster SD, Bartke T, Green AR et al. JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 2009; 461: 819–822.

    Article  CAS  Google Scholar 

  35. Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007; 128: 325–339.

    Article  CAS  Google Scholar 

  36. Rhee SG . Cell signaling. H2O2, a necessary evil for cell signaling. Science 2006; 312: 1882–1883.

    Article  Google Scholar 

  37. Tefferi A, Vaidya R, Caramazza D, Finke C, Lasho T, Pardanani A . Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J Clin Oncol 2011; 29: 1356–1363.

    Article  CAS  Google Scholar 

  38. Fleischman AG, Aichberger KJ, Luty SB, Bumm TG, Petersen CL, Doratotaj S et al. TNFalpha facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms. Blood 2011; 118: 6392–6398.

    Article  CAS  Google Scholar 

  39. Pardanani A, Vannucchi AM, Passamonti F, Cervantes F, Barbui T, Tefferi A . JAK inhibitor therapy for myelofibrosis: critical assessment of value and limitations. Leukemia 2011; 25: 218–225.

    Article  CAS  Google Scholar 

  40. Hole PS, Darley RL, Tonks A . Do reactive oxygen species play a role in myeloid leukemias? Blood 2011; 117: 5816–5826.

    Article  CAS  Google Scholar 

  41. Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y et al. TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 2010; 463: 676–680.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the animal facility of Institut Gustave Roussy and Olivia Bawa for histopathological analysis. We thank P Rameau and Y Lécluse for cell sorting and flow cytometry analysis (IRCIV, Institut Gustave Roussy, Villejuif, France). This work was supported by grants from La Ligue Nationale Contre le Cancer ‘Equipe labellisée 2007 and 2012’, ARC (projet libre 2012), ANR (Thrombocytose), ANR Blanc (Epigénome) and INSERM. CM was funded by a post-doctoral fellowship from the Ile-de-France Cancéropôle and INCa and then supported by a labex GR-Ex fellowship. Labex GR-Ex (IP, VW) is funded by the program ‘Investissements d’avenir’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Plo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marty, C., Lacout, C., Droin, N. et al. A role for reactive oxygen species in JAK2V617F myeloproliferative neoplasm progression. Leukemia 27, 2187–2195 (2013). https://doi.org/10.1038/leu.2013.102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.102

Keywords

This article is cited by

Search

Quick links