Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenes, Fusion Genes and Tumor Suppressor Genes

AML1-Evi-1 specifically transforms hematopoietic stem cells through fusion of the entire Evi-1 sequence to AML1

Abstract

The t(3;21) chromosomal translocation seen in blastic crisis of chronic myeloid leukemia and secondary leukemias results in a formation of a chimeric protein AML1-Evi-1, which suppresses wild-type AML1 function. Loss of AML1 function causes expansion of hematopoietic progenitor cells, whereas it is not sufficient for the development of leukemia. To identify essential mechanisms through which AML1-Evi-1 exerts full leukemogenic potential, we introduced AML1-Evi-1 and its mutants in murine bone marrow cells, and evaluated their transforming activities by colony replating assays. The transforming activity of AML1-Evi-1 was lost when any of the known functional domains of Evi-1 was deleted from the chimeric protein, and forced expression of Evi-1 did not transform the AML1-deleted bone marrow cells. Unlike the MLL-ENL and AML1-ETO leukemia-related chimeric proteins, AML1-Evi-1 could transform only the hematopoietic stem cell fraction. Moreover, AML1-Evi-1-transformed cells show a cell-marker profile distinct from that of the cells transformed by AML1-ETO, which also suppresses AML1 function. Thus, leukemogenic activity of AML1-Evi-1 may be due to activation of molecular mechanisms distinct from those activated by MLL-ENL or AML1-ETO in the hematopoietic stem cell fractions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M . t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA 1991; 88: 10431–10434.

    Article  CAS  Google Scholar 

  2. Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S et al. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 1992; 80: 1825–1831.

    CAS  Google Scholar 

  3. Nucifora G, Begy CR, Kobayashi H, Roulston D, Claxton D, Pedersen-Bjergaard J et al. Consistent intergenic splicing and production of multiple transcripts between AML1 at 21q22 and unrelated genes at 3q26 in (3;21)(q26;q22) translocations. Proc Natl Acad Sci USA 1994; 91: 4004–4008.

    Article  CAS  Google Scholar 

  4. Mitani K, Ogawa S, Tanaka T, Miyoshi H, Kurokawa M, Mano H et al. Generation of the AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. EMBO J 1994; 13: 504–510.

    Article  CAS  Google Scholar 

  5. Tanaka T, Mitani K, Kurokawa M, Ogawa S, Tanaka K, Nishida J et al. Dual functions of the AML1/Evi-1 chimeric protein in the mechanism of leukemogenesis in t(3;21) leukemias. Mol Cell Biol 1995; 15: 2383–2392.

    Article  CAS  Google Scholar 

  6. Zent CS, Mathieu C, Claxton DF, Zhang DE, Tenen DG, Rowley JD et al. The chimeric genes AML1/MDS1 and AML1/EAP inhibit AML1B activation at the CSF1R promoter, but only AML1/MDS1 has tumor-promoter properties. Proc Natl Acad Sci USA 1996; 93: 1044–1048.

    Article  CAS  Google Scholar 

  7. Growney JD, Shigematsu H, Li Z, Lee BH, Adelsperger J, Rowan R et al. Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 2005; 106: 494–504.

    Article  CAS  Google Scholar 

  8. Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, Yamagata T et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 2004; 10: 299–304.

    Article  CAS  Google Scholar 

  9. Putz G, Rosner A, Nuesslein I, Schmitz N, Buchholz F . AML1 deletion in adult mice causes splenomegaly and lymphomas. Oncogene 2006; 25: 929–939.

    Article  CAS  Google Scholar 

  10. Meyers S, Lenny N, Hiebert SW . The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation. Mol Cell Biol 1995; 15: 1974–1982.

    Article  CAS  Google Scholar 

  11. Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington CJ et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 2001; 98: 10398–10403.

    Article  CAS  Google Scholar 

  12. Rhoades KL, Hetherington CJ, Harakawa N, Yergeau DA, Zhou L, Liu LQ et al. Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood 2000; 96: 2108–2115.

    CAS  Google Scholar 

  13. Higuchi M, O'Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR . Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 2002; 1: 63–74.

    Article  CAS  Google Scholar 

  14. Cuenco GM, Nucifora G, Ren R . Human AML1/MDS1/EVI1 fusion protein induces an acute myelogenous leukemia (AML) in mice: a model for human AML. Proc Natl Acad Sci USA 2000; 97: 1760–1765.

    Article  CAS  Google Scholar 

  15. Senyuk V, Chakraborty S, Mikhail FM, Zhao R, Chi Y, Nucifora G . The leukemia-associated transcription repressor AML1/MDS1/EVI1 requires CtBP to induce abnormal growth and differentiation of murine hematopoietic cells. Oncogene 2002; 21: 3232–3240.

    Article  CAS  Google Scholar 

  16. Nitta E, Izutsu K, Yamaguchi Y, Imai Y, Ogawa S, Chiba S et al. Oligomerization of Evi-1 regulated by the PR domain contributes to recruitment of corepressor CtBP. Oncogene 2005; 24: 6165–6173.

    Article  CAS  Google Scholar 

  17. Kurokawa M, Mitani K, Irie K, Matsuyama T, Takahashi T, Chiba S et al. The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature 1998; 394: 92–96.

    Article  CAS  Google Scholar 

  18. Kurokawa M, Mitani K, Yamagata T, Takahashi T, Izutsu K, Ogawa S et al. The evi-1 oncoprotein inhibits c-Jun N-terminal kinase and prevents stress-induced cell death. EMBO J 2000; 19: 2958–2968.

    Article  CAS  Google Scholar 

  19. Tanaka T, Nishida J, Mitani K, Ogawa S, Yazaki Y, Hirai H . Evi-1 raises AP-1 activity and stimulates c-fos promoter transactivation with dependence on the second zinc finger domain. J Biol Chem 1994; 269: 24020–24026.

    CAS  PubMed  Google Scholar 

  20. Chakraborty S, Senyuk V, Sitailo S, Chi Y, Nucifora G . Interaction of EVI1 with cAMP-responsive element-binding protein-binding protein (CBP) and p300/CBP-associated factor (P/CAF) results in reversible acetylation of EVI1 and in co-localization in nuclear speckles. J Biol Chem 2001; 276: 44936–44943.

    Article  CAS  Google Scholar 

  21. Palmer S, Brouillet JP, Kilbey A, Fulton R, Walker M, Crossley M et al. Evi-1 transforming and repressor activities are mediated by CtBP co-repressor proteins. J Biol Chem 2001; 276: 25834–25840.

    Article  CAS  Google Scholar 

  22. Izutsu K, Kurokawa M, Imai Y, Maki K, Mitani K, Hirai H . The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood 2001; 97: 2815–2822.

    Article  CAS  Google Scholar 

  23. Kurokawa M, Mitani K, Imai Y, Ogawa S, Yazaki Y, Hirai H . The t(3;21) fusion product, AML1/Evi-1, interacts with Smad3 and blocks transforming growth factor-beta-mediated growth inhibition of myeloid cells. Blood 1998; 92: 4003–4012.

    CAS  Google Scholar 

  24. Izutsu K, Kurokawa M, Imai Y, Ichikawa M, Asai T, Maki K et al. The t(3;21) fusion product, AML1/Evi-1 blocks AML1-induced transactivation by recruiting CtBP. Oncogene 2002; 21: 2695–2703.

    Article  CAS  Google Scholar 

  25. Cuenco GM, Ren R . Both AML1 and EVI1 oncogenic components are required for the cooperation of AML1/MDS1/EVI1 with BCR/ABL in the induction of acute myelogenous leukemia in mice. Oncogene 2004; 23: 569–579.

    Article  CAS  Google Scholar 

  26. Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL . Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003; 17: 3029–3035.

    Article  CAS  Google Scholar 

  27. Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 2004; 6: 587–596.

    Article  CAS  Google Scholar 

  28. Meyers S, Downing JR, Hiebert SW . Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein–protein interactions. Mol Cell Biol 1993; 13: 6336–6345.

    Article  CAS  Google Scholar 

  29. Ono R, Nakajima H, Ozaki K, Kumagai H, Kawashima T, Taki T et al. Dimerization of MLL fusion proteins and FLT3 activation synergize to induce multiple-lineage leukemogenesis. J Clin Invest 2005; 115: 919–929.

    Article  CAS  Google Scholar 

  30. Kurokawa M, Ogawa S, Tanaka T, Mitani K, Yazaki Y, Witte ON et al. The AML1/Evi-1 fusion protein in the t(3;21) translocation exhibits transforming activity on Rat1 fibroblasts with dependence on the Evi-1 sequence. Oncogene 1995; 11: 833–840.

    CAS  PubMed  Google Scholar 

  31. Senyuk V, Li D, Zakharov A, Mikhail FM, Nucifora G . The distal zinc finger domain of AML1/MDS1/EVI1 is an oligomerization domain involved in induction of hematopoietic differentiation defects in primary cells in vitro. Cancer Res 2005; 65: 7603–7611.

    Article  CAS  Google Scholar 

  32. Deguchi K, Ayton PM, Carapeti M, Kutok JL, Snyder CS, Williams IR et al. MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell 2003; 3: 259–271.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank SW Hiebert for AML1-ETO cDNA, T Kitamura for MLL-ENL cDNA, R Kühn and J Takeda for Mx-cre transgenic mice, Kirin Brewery for thrombopoietin and Y Sawamoto and Y Shimamura for excellent technical assistance. This work was supported in part by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Grant-in-Aid for Scientific Research on Priority Areas, KAKENHI(18013014); Japan Society for the Promotion of Science(JSPS), Grant-in-Aid for JSPS Fellows (17-10666) and the Ministry of Health, Labour and Welfare, Health and Labour Sciences Research Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Kurokawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeshita, M., Ichikawa, M., Nitta, E. et al. AML1-Evi-1 specifically transforms hematopoietic stem cells through fusion of the entire Evi-1 sequence to AML1. Leukemia 22, 1241–1249 (2008). https://doi.org/10.1038/leu.2008.53

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.53

Keywords

This article is cited by

Search

Quick links