Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Angiogenesis and hypertension: an update

Abstract

The purpose of this review is to provide a basic understanding of the important relationship between microvascular remodelling, angiogenesis and hypertension, that is, provide an overview of recent experimental and clinical evidence from anti-hypertensive and pro- and anti-angiogenic therapy with respect to hypertension and microvascular structure. Microvascular rarefaction, that is, a loss of terminal arterioles and capillaries, is found in most forms of human and experimental arterial hypertension. This further increases peripheral resistance, and aggravates hypertension and hypertension-induced target organ damage. In some cases with a genetic predisposition, hypertension is preceded by a loss of microvessels. Therefore, new therapies aimed at reversing microvascular rarefaction potentially represent candidate treatments of hypertension. The microvasculature is formed by the continuous balance between de novo angiogenesis and microvascular regression. Imbalanced angiogenesis, in addition to functional shut-off of blood flow, contributes to microvascular rarefaction. Numerous clinical trials assessing anti-angiogenic agents in cancer patients show that this therapy leads to microvascular rarefaction and causes or aggravates hypertension. The development of specific pro-angiogenic treatment to correct hypertension or ischaemic disorders, however, it is still in its infancy. On the other hand, long-term treatment by classic anti-hypertensive therapies that present vasodilator activity can correct for hypertension-associated rarefaction in man.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Greene AS, Tonellato PJ, Lui J, Lombard JH, Cowley Jr AW . Microvascular rarefaction and tissue vascular resistance in hypertension. Am J Physiol 1989; 256 (1 Pt 2): H126–H131.

    CAS  PubMed  Google Scholar 

  2. Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P . Resistance to blood flow in microvessels in vivo. Circ Res 1994; 75 (5): 904–915.

    CAS  PubMed  Google Scholar 

  3. Malek AM, Izumo S . Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J Cell Sci 1996; 109 (Pt 4): 713–726.

    CAS  PubMed  Google Scholar 

  4. Glyn MC, Ward BJ . A beta-actin isotype is present in rat cardiac endothelial cells but not in cardiac myocytes. Microcirculation 1998; 5 (4): 259–264.

    CAS  PubMed  Google Scholar 

  5. Glyn MC, Ward BJ . Contraction in cardiac endothelial cells contributes to changes in capillary dimensions following ischaemia and reperfusion. Cardiovasc Res 2000; 48 (2): 346–356.

    CAS  PubMed  Google Scholar 

  6. Hansen-Smith FM, Morris LW, Greene AS, Lombard JH . Rapid microvessel rarefaction with elevated salt intake and reduced renal mass hypertension in rats. Circ Res 1996; 79 (2): 324–330.

    CAS  PubMed  Google Scholar 

  7. Serne EH, Gans RO, ter Maaten JC, Tangelder GJ, Donker AJ, Stehouwer CD . Impaired skin capillary recruitment in essential hypertension is caused by both functional and structural capillary rarefaction. Hypertension 2001; 38 (2): 238–242.

    CAS  PubMed  Google Scholar 

  8. Antonios TF, Singer DR, Markandu ND, Mortimer PS, MacGregor GA . Structural skin capillary rarefaction in essential hypertension. Hypertension 1999; 33 (4): 998–1001.

    CAS  PubMed  Google Scholar 

  9. Cheng C, Diamond JJ, Falkner B . Functional capillary rarefaction in mild blood pressure elevation. Clin Transl Sci 2008; 1 (1): 75–79.

    PubMed Central  PubMed  Google Scholar 

  10. Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA . Microcirculation in hypertension: a new target for treatment? Circulation 2001; 104 (6): 735–740.

    CAS  PubMed  Google Scholar 

  11. Takeshita S, Tomiyama H, Yokoyama N, Kawamura Y, Furukawa T, Ishigai Y et al. Angiotensin-converting enzyme inhibition improves defective angiogenesis in the ischemic limb of spontaneously hypertensive rats. Cardiovasc Res 2001; 52 (2): 314–320.

    CAS  PubMed  Google Scholar 

  12. Gohlke P, Kuwer I, Schnell A, Amann K, Mall G, Unger T . Blockade of bradykinin B2 receptors prevents the increase in capillary density induced by chronic angiotensin-converting enzyme inhibitor treatment in stroke-prone spontaneously hypertensive rats. Hypertension 1997; 29 (1 Pt 2): 478–482.

    CAS  PubMed  Google Scholar 

  13. Hutchins PM, Darnell AE . Observation of a decreased number of small arterioles in spontaneously hypertensive rats. Circ Res 1974; 34: 161–165.

    Google Scholar 

  14. le Noble JL, Tangelder GJ, Slaaf DW, van Essen H, Reneman RS, Struyker-Boudier HA . A functional morphometric study of the cremaster muscle microcirculation in young spontaneously hypertensive rats. J Hypertens 1990; 8 (8): 741–748.

    CAS  PubMed  Google Scholar 

  15. Antonios TF, Rattray FE, Singer DR, Markandu ND, Mortimer PS, MacGregor GA . Maximization of skin capillaries during intravital video-microscopy in essential hypertension: comparison between venous congestion, reactive hyperaemia and core heat load tests. Clin Sci (Lond) 1999; 97 (4): 523–528.

    CAS  Google Scholar 

  16. Noon JP, Walker BR, Webb DJ, Shore AC, Holton DW, Edwards HV et al. Impaired microvascular dilatation and capillary rarefaction in young adults with a predisposition to high blood pressure. J Clin Invest 1997; 99 (8): 1873–1879.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Antonios TF, Rattray FM, Singer DR, Markandu ND, Mortimer PS, MacGregor GA . Rarefaction of skin capillaries in normotensive offspring of individuals with essential hypertension. Heart 2003; 89 (2): 175–178.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Liew G, Wang JJ, Duncan BB, Klein R, Sharrett AR, Brancati F et al. Low birthweight is associated with narrower arterioles in adults. Hypertension 2008; 51 (4): 933–938.

    CAS  PubMed  Google Scholar 

  19. Poston L . Influences of maternal nutritional status on vascular function in the offspring. Curr Drug Targets 2007; 8 (8): 914–922.

    CAS  PubMed  Google Scholar 

  20. Pladys P, Sennlaub F, Brault S, Checchin D, Lahaie I, Le NL et al. Microvascular rarefaction and decreased angiogenesis in rats with fetal programming of hypertension associated with exposure to a low-protein diet in utero. Am J Physiol Regul Integr Comp Physiol 2005; 289 (6): R1580–R1588.

    CAS  PubMed  Google Scholar 

  21. Wagatsuma A . Effect of aging on expression of angiogenesis-related factors in mouse skeletal muscle. Exp Gerontol 2006; 41 (1): 49–54.

    CAS  PubMed  Google Scholar 

  22. Jesmin S, Hattori Y, Togashi H, Ueno K, Yoshioka M, Sakuma I . Age-related changes in cardiac expression of VEGF and its angiogenic receptor KDR in stroke-prone spontaneously hypertensive rats. Mol Cell Biochem 2005; 272 (1-2): 63–73.

    CAS  PubMed  Google Scholar 

  23. Shimada T, Takeshita Y, Murohara T, Sasaki K, Egami K, Shintani S et al. Angiogenesis and vasculogenesis are impaired in the precocious-aging klotho mouse. Circulation 2004; 110 (9): 1148–1155.

    PubMed  Google Scholar 

  24. Sonntag WE, Lynch CD, Cooney PT, Hutchins PM . Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor 1. Endocrinology 1997; 138 (8): 3515–3520.

    CAS  PubMed  Google Scholar 

  25. Khan AS, Lynch CD, Sane DC, Willingham MC, Sonntag WE . Growth hormone increases regional coronary blood flow and capillary density in aged rats. J Gerontol A Biol Sci Med Sci 2001; 56 (8): B364–B371.

    CAS  PubMed  Google Scholar 

  26. Swift ME, Kleinman HK, DiPietro LA . Impaired wound repair and delayed angiogenesis in aged mice. Lab Invest 1999; 79 (12): 1479–1487.

    CAS  PubMed  Google Scholar 

  27. Edelberg JM, Reed MJ . Aging and angiogenesis. Front Biosci 2003; 8: s1199–s1209.

    CAS  PubMed  Google Scholar 

  28. le Noble FA, Stassen FR, Hacking WJ, Struijker Boudier HA . Angiogenesis and hypertension. J Hypertens 1998; 16 (11): 1563–1572.

    CAS  PubMed  Google Scholar 

  29. Sane DC, Anton L, Brosnihan KB . Angiogenic growth factors and hypertension. Angiogenesis 2004; 7 (3): 193–201.

    CAS  PubMed  Google Scholar 

  30. Suematsu M, Suzuki H, Delano FA, Schmid-Schonbein GW . The inflammatory aspect of the microcirculation in hypertension: oxidative stress, leukocytes/endothelial interaction, apoptosis. Microcirculation 2002; 9 (4): 259–276.

    CAS  PubMed  Google Scholar 

  31. Murfee WL, Schmid-Schonbein GW . Chapter 12. Structure of microvascular networks in genetic hypertension. Methods Enzymol 2008; 444: 271–284.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Hernandez N, Torres SH, Finol HJ, Vera O . Capillary changes in skeletal muscle of patients with essential hypertension. Anat Rec 1999; 256 (4): 425–432.

    CAS  PubMed  Google Scholar 

  33. Puato M, Faggin E, Favaretto E, Bertipaglia B, Rattazzi M, Rizzoni D et al. Prevalence of fetal-type smooth muscle cells in the media of microvessels from hypertensive patients. Hypertension 2004; 44 (2): 191–194.

    CAS  PubMed  Google Scholar 

  34. Rizzoni D, Castellano M, Porteri E, Bettoni G, Muiesan ML, Cinelli A et al. Effects of low and high doses of fosinopril on the structure and function of resistance arteries. Hypertension 1995; 26 (1): 118–123.

    CAS  PubMed  Google Scholar 

  35. Hughes AD, Stanton AV, Jabbar AS, Chapman N, Martinez-Perez ME, Mc GTSA . Effect of antihypertensive treatment on retinal microvascular changes in hypertension. J Hypertens 2008; 26 (8): 1703–1707.

    CAS  PubMed  Google Scholar 

  36. Stanton AV, Wasan B, Cerutti A, Ford S, Marsh R, Sever PP et al. Vascular network changes in the retina with age and hypertension. J Hypertens 1995; 13 (12 Pt 2): 1724–1728.

    CAS  PubMed  Google Scholar 

  37. Wong TY, Klein R, Klein BE, Meuer SM, Hubbard LD . Retinal vessel diameters and their associations with age and blood pressure. Invest Ophthalmol Vis Sci 2003; 44 (11): 4644–4650.

    PubMed  Google Scholar 

  38. Ikram MK, Witteman JC, Vingerling JR, Breteler MM, Hofman A, de Jong PT . Retinal vessel diameters and risk of hypertension: the Rotterdam Study. Hypertension 2006; 47 (2): 189–194.

    CAS  PubMed  Google Scholar 

  39. Struijker-Boudier HA . Retinal microcirculation and early mechanisms of hypertension. Hypertension 2008; 51 (4): 821–822.

    CAS  PubMed  Google Scholar 

  40. Boulanger CM . Secondary endothelial dysfunction: hypertension and heart failure. J Mol Cell Cardiol 1999; 31 (1): 39–49.

    CAS  PubMed  Google Scholar 

  41. Watson T, Goon PK, Lip GY . Endothelial progenitor cells, endothelial dysfunction, inflammation, and oxidative stress in hypertension. Antioxid Redox Signal 2008; 10 (6): 1079–1088.

    CAS  PubMed  Google Scholar 

  42. Luque Contreras D, Vargas Robles H, Romo E, Rios A, Escalante B . The role of nitric oxide in the post-ischemic revascularization process. Pharmacol Ther 2006; 112 (2): 553–563.

    CAS  PubMed  Google Scholar 

  43. Gibbons GH, Dzau VJ . The emerging concept of vascular remodeling. N Engl J Med 1994; 330 (20): 1431–1438.

    CAS  PubMed  Google Scholar 

  44. Lee PC, Salyapongse AN, Bragdon GA, Shears II LL, Watkins SC, Edington HD et al. Impaired wound healing and angiogenesis in eNOS-deficient mice. Am J Physiol 1999; 277 (4 Pt 2): H1600–H1608.

    CAS  PubMed  Google Scholar 

  45. Sumanovski LT, Battegay E, Stumm M, van der Kooij M, Sieber CC . Increased angiogenesis in portal hypertensive rats: role of nitric oxide. Hepatology 1999; 29 (4): 1044–1049.

    CAS  PubMed  Google Scholar 

  46. Kiefer FN, Misteli H, Kalak N, Tschudin K, Fingerle J, Van der Kooij M et al. Inhibition of NO biosynthesis, but not elevated blood pressure, reduces angiogenesis in rat models of secondary hypertension. Blood Press 2002; 11 (2): 116–124.

    CAS  PubMed  Google Scholar 

  47. Sieber CC, Sumanovski LT, Stumm M, van der Kooij M, Battegay E . In vivo angiogenesis in normal and portal hypertensive rats: role of basic fibroblast growth factor and nitric oxide. J Hepatol 2001; 34 (5): 644–650.

    CAS  PubMed  Google Scholar 

  48. Bach MH, Sadoun E, Reed MJ . Defects in activation of nitric oxide synthases occur during delayed angiogenesis in aging. Mech Ageing Dev 2005; 126 (4): 467–473.

    CAS  PubMed  Google Scholar 

  49. Munk VC, Sanchez de Miguel L, Humar R, Kiefer FN, Butz N, Battegay EJ . iNOS is required for in vitro angiogenesis of hypoxic mouse hearts. Semin Cardiol 2006; 12 (1): 21–26.

    Google Scholar 

  50. Sanchez de Miguel L, Neysari S, Jakob S, Petrimpol M, Butz N, Banfi A et al. B2-kinin receptor plays a key role in B1-, angiotensin converting enzyme inhibitor-, and vascular endothelial growth factor-stimulated in vitro angiogenesis in the hypoxic mouse heart. Cardiovasc Res 2008; 80 (1): 106–113.

    CAS  PubMed  Google Scholar 

  51. Carmeliet P . Angiogenesis in life, disease and medicine. Nature 2005; 438 (7070): 932–936.

    CAS  PubMed  Google Scholar 

  52. Plate KH, Breier G, Weich HA, Risau W . Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 1992; 359 (6398): 845–848.

    CAS  PubMed  Google Scholar 

  53. Risau W . Mechanisms of angiogenesis. Nature 1997; 386 (6626): 671–674.

    CAS  PubMed  Google Scholar 

  54. Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell 2007; 130 (4): 691–703.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 2003; 349 (5): 427–434.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Zakarija A, Soff G . Update on angiogenesis inhibitors. Curr Opin Oncol 2005; 17 (6): 578–583.

    CAS  PubMed  Google Scholar 

  57. Fiedler W, Serve H, Dohner H, Schwittay M, Ottmann OG, O’Farrell AM et al. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood 2005; 105 (3): 986–993.

    CAS  PubMed  Google Scholar 

  58. Zhu X, Wu S, Dahut WL, Parikh CR . Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis 2007; 49 (2): 186–193.

    CAS  PubMed  Google Scholar 

  59. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350 (23): 2335–2342.

    CAS  PubMed  Google Scholar 

  60. Mourad JJ, des Guetz G, Debbabi H, Levy BI . Blood pressure rise following angiogenesis inhibition by bevacizumab. A crucial role for microcirculation. Ann Oncol 2008; 19 (5): 927–934.

    PubMed  Google Scholar 

  61. Steeghs N, Gelderblom H, Roodt JO, Christensen O, Rajagopalan P, Hovens M et al. Hypertension and rarefaction during treatment with telatinib, a small molecule angiogenesis inhibitor. Clin Cancer Res 2008; 14 (11): 3470–3476.

    CAS  PubMed  Google Scholar 

  62. Pande A, Lombardo J, Spangenthal E, Javle M . Hypertension secondary to anti-angiogenic therapy: experience with bevacizumab. Anticancer Res 2007; 27 (5B): 3465–3470.

    CAS  PubMed  Google Scholar 

  63. Dincer M, Altundag K . Angiotensin-converting enzyme inhibitors for bevacizumab-induced hypertension. Ann Pharmacother 2006; 40 (12): 2278–2279.

    PubMed  Google Scholar 

  64. Siemann DW, Chaplin DJ, Horsman MR . Vascular-targeting therapies for treatment of malignant disease. Cancer 2004; 100 (12): 2491–2499.

    CAS  PubMed  Google Scholar 

  65. Brown SL, Kolozsvary A, Kim JH . Vascular targeting therapies for treatment of malignant disease. Cancer 2005; 104 (1): 216–217; author reply 217.

    PubMed  Google Scholar 

  66. Tongers J, Roncalli JG, Losordo DW . Therapeutic angiogenesis for critical limb ischemia: microvascular therapies coming of age. Circulation 2008; 118 (1): 9–16.

    PubMed  Google Scholar 

  67. Simons M . Angiogenesis: where do we stand now? Circulation 2005; 111 (12): 1556–1566.

    PubMed  Google Scholar 

  68. Cao Y, Hong A, Schulten H, Post MJ . Update on therapeutic neovascularization. Cardiovasc Res 2005; 65 (3): 639–648.

    CAS  PubMed  Google Scholar 

  69. Ehrbar M, Djonov VG, Schnell C, Tschanz SA, Martiny-Baron G, Schenk U et al. Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res 2004; 94 (8): 1124–1132.

    CAS  PubMed  Google Scholar 

  70. Zisch AH, Lutolf MP, Hubbell JA . Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc Pathol 2003; 12 (6): 295–310.

    CAS  PubMed  Google Scholar 

  71. von Degenfeld G, Banfi A, Springer ML, Blau HM . Myoblast-mediated gene transfer for therapeutic angiogenesis and arteriogenesis. Br J Pharmacol 2003; 140 (4): 620–626.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Cao R, Brakenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 2003; 9 (5): 604–613.

    CAS  PubMed  Google Scholar 

  73. Rajagopalan S, Olin J, Deitcher S, Pieczek A, Laird J, Grossman PM et al. Use of a constitutively active hypoxia-inducible factor-1alpha transgene as a therapeutic strategy in no-option critical limb ischemia patients: phase I dose-escalation experience. Circulation 2007; 115 (10): 1234–1243.

    CAS  PubMed  Google Scholar 

  74. Lachmann N, Nikol S . Therapeutic angiogenesis for peripheral artery disease: stem cell therapy. Vasa 2007; 36 (4): 241–251.

    CAS  PubMed  Google Scholar 

  75. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001; 103 (5): 634–637.

    CAS  PubMed  Google Scholar 

  76. Ott I, Keller U, Knoedler M, Gotze KS, Doss K, Fischer P et al. Endothelial-like cells expanded from CD34+ blood cells improve left ventricular function after experimental myocardial infarction. FASEB J 2005; 19 (8): 992–994.

    CAS  PubMed  Google Scholar 

  77. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 2000; 97 (7): 3422–3427.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Jujo K, Ii M, Losordo DW . Endothelial progenitor cells in neovascularization of infarcted myocardium. J Mol Cell Cardiol 2008; 45 (4): 530–544.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 1999; 286 (5449): 2511–2514.

    CAS  PubMed  Google Scholar 

  80. Cho CH, Kammerer RA, Lee HJ, Steinmetz MO, Ryu YS, Lee SH et al. COMP-Ang1: a designed angiopoietin-1 variant with nonleaky angiogenic activity. Proc Natl Acad Sci USA 2004; 101 (15): 5547–5552.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee JS, Song SH, Kim JM, Shin IS, Kim KL, Suh YL et al. Angiopoietin-1 prevents hypertension and target organ damage through its interaction with endothelial Tie2 receptor. Cardiovasc Res 2008; 78 (3): 572–580.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Vilar J, Waeckel L, Bonin P, Cochain C, Loinard C, Duriez M et al. Chronic hypoxia-induced angiogenesis normalizes blood pressure in spontaneously hypertensive rats. Circ Res 2008; 103 (7): 761–769.

    CAS  PubMed  Google Scholar 

  83. Ruiz L, Penaloza D . Altitude and hypertension. Mayo Clin Proc 1977; 52 (7): 442–445.

    CAS  PubMed  Google Scholar 

  84. Debbabi H, Uzan L, Mourad JJ, Safar M, Levy BI, Tibirica E . Increased skin capillary density in treated essential hypertensive patients. Am J Hypertens 2006; 19 (5): 477–483.

    PubMed  Google Scholar 

  85. Schiffrin EL, Deng LY, Larochelle P . Effects of a beta-blocker or a converting enzyme inhibitor on resistance arteries in essential hypertension. Hypertension 1994; 23 (1): 83–91.

    CAS  PubMed  Google Scholar 

  86. Schiffrin EL . Vascular remodeling and endothelial function in hypertensive patients: effects of antihypertensive therapy. Scand Cardiovasc J Suppl 1998; 47: 15–21.

    CAS  PubMed  Google Scholar 

  87. Ebrahimian TG, Tamarat R, Clergue M, Duriez M, Levy BI, Silvestre JS . Dual effect of angiotensin-converting enzyme inhibition on angiogenesis in type 1 diabetic mice. Arterioscler Thromb Vasc Biol 2005; 25 (1): 65–70.

    CAS  PubMed  Google Scholar 

  88. Silvestre JS, Bergaya S, Tamarat R, Duriez M, Boulanger CM, Levy BI . Proangiogenic effect of angiotensin-converting enzyme inhibition is mediated by the bradykinin B(2) receptor pathway. Circ Res 2001; 89 (8): 678–683.

    CAS  PubMed  Google Scholar 

  89. Silvestre JS, Kamsu-Kom N, Clergue M, Duriez M, Levy BI . Very-low-dose combination of the angiotensin-converting enzyme inhibitor perindopril and the diuretic indapamide induces an early and sustained increase in neovascularization in rat ischemic legs. J Pharmacol Exp Ther 2002; 303 (3): 1038–1043.

    CAS  PubMed  Google Scholar 

  90. Battegay EJ, de Miguel LS, Petrimpol M, Humar R . Effects of anti-hypertensive drugs on vessel rarefaction. Curr Opin Pharmacol 2007; 7 (2): 151–157.

    CAS  PubMed  Google Scholar 

  91. Liu YH, Yang XP, Sharov VG, Nass O, Sabbah HN, Peterson E et al. Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors. J Clin Invest 1997; 99 (8): 1926–1935.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Li P, Kondo T, Numaguchi Y, Kobayashi K, Aoki M, Inoue N et al. Role of bradykinin, nitric oxide, and angiotensin II type 2 receptor in imidapril-induced angiogenesis. Hypertension 2008; 51 (2): 252–258.

    CAS  PubMed  Google Scholar 

  93. Volpert OV, Ward WF, Lingen MW, Chesler L, Solt DB, Johnson MD et al. Captopril inhibits angiogenesis and slows the growth of experimental tumors in rats. J Clin Invest 1996; 98 (3): 671–679.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Gately S, Twardowski P, Stack MS, Cundiff DL, Grella D, Castellino FJ et al. The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc Natl Acad Sci USA 1997; 94 (20): 10868–10872.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang DH, Prewitt RL . Captopril reduces aortic and microvascular growth in hypertensive and normotensive rats. Hypertension 1990; 15 (1): 68–77.

    CAS  PubMed  Google Scholar 

  96. Nelissen-Vrancken HJ, Boudier HA, Daemen MJ, Smits JF . Antihypertensive therapy and adaptive mechanisms in peripheral ischemia. Hypertension 1993; 22 (5): 780–788.

    CAS  PubMed  Google Scholar 

  97. Kitayama H, Maeshima Y, Takazawa Y, Yamamoto Y, Wu Y, Ichinose K et al. Regulation of angiogenic factors in angiotensin II infusion model in association with tubulointerstitial injuries. Am J Hypertens 2006; 19 (7): 718–727.

    CAS  PubMed  Google Scholar 

  98. Sabri A, Samuel JL, Marotte F, Poitevin P, Rappaport L, Levy BI . Microvasculature in angiotensin II-dependent cardiac hypertrophy in the rat. Hypertension 1998; 32 (2): 371–375.

    CAS  PubMed  Google Scholar 

  99. Schieffer B, Wirger A, Meybrunn M, Seitz S, Holtz J, Riede UN et al. Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 1994; 89 (5): 2273–2282.

    CAS  PubMed  Google Scholar 

  100. Scheidegger KJ, Wood JM, van Essen H, Struijker-Boudier HA . Effects of prolonged blockade of the renin angiotensin system on striated muscle microcirculation of spontaneously hypertensive rats. J Pharmacol Exp Ther 1996; 278 (3): 1276–1281.

    CAS  PubMed  Google Scholar 

  101. Olsen MH, Fossum E, Hoieggen A, Wachtell K, Hjerkinn E, Nesbitt SD et al. Long-term treatment with losartan versus atenolol improves insulin sensitivity in hypertension: ICARUS, a LIFE substudy. J Hypertens 2005; 23 (4): 891–898.

    CAS  PubMed  Google Scholar 

  102. Rizzoni D, Pasini E, Flati V, Rodella LF, Paiardi S, Assanelli D et al. Angiotensin receptor blockers improve insulin signaling and prevent microvascular rarefaction in the skeletal muscle of spontaneously hypertensive rats. J Hypertens 2008; 26 (8): 1595–1601.

    CAS  PubMed  Google Scholar 

  103. Munk VC, Sanchez de Miguel L, Petrimpol M, Butz N, Banfi A, Eriksson U et al. Angiotensin II induces angiogenesis in the hypoxic adult mouse heart in vitro through an AT2-B2 receptor pathway. Hypertension 2007; 49 (5): 1178–1185.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Battegay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humar, R., Zimmerli, L. & Battegay, E. Angiogenesis and hypertension: an update. J Hum Hypertens 23, 773–782 (2009). https://doi.org/10.1038/jhh.2009.63

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2009.63

Keywords

This article is cited by

Search

Quick links