Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interleukin-armed chimeric antigen receptor-modified T cells for cancer immunotherapy

Abstract

Chimeric antigen receptor-modified T cells (CAR-T) are endowed with cytotoxic specificity to tumor cells. Although CAR-T-based cancer immunotherapy presents curable therapeutic potential for hematological malignancies, achieving substantial efficacy for solid tumors remain challenging. Researchers have exploited many strategies to enhance the anti-tumor efficacy of CAR-T cells for solid tumors, among which cytokine-armed CAR-T cells improve the proliferation, survival, homing and other properties of CAR-T cells. Interleukins (ILs), pivotal cytokines that affect the function of immune cells, were co-expressed in CAR-T cells or combinatorially administered to enhance the therapeutic potential in clinical trials. In this review, we summarize the strategies exploited by ILs to improve the anti-cancer ability of CAR-T cells and the different impacts of different ILs on CAR-T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. June C, Rosenberg SA, Sadelain M, Weber JS. T-cell therapy at the threshold. Nat Biotechnol 2012; 30: 611–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eshhar Z. The T-body approach: redirecting T cells with antibody specificity. Handb Exp Pharmacol 2008; (181: 329–342.

    Article  CAS  Google Scholar 

  3. Till BG, Jensen MC, Wang J, Chen EY, Wood BL, Greisman HA et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 2008; 112: 2261–2271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 2006; 12 (20 Pt 1): 6106–6115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chmielewski M, Hombach AA, Abken H. CD28 cosignalling does not affect the activation threshold in a chimeric antigen receptor-redirected T-cell attack. Gene Ther 2011; 18: 62–72.

    Article  CAS  PubMed  Google Scholar 

  6. Imai C, Mihara K, Andreansky M, Nicholson IC, Pui CH, Geiger TL et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 2004; 18: 676–684.

    Article  CAS  PubMed  Google Scholar 

  7. Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 2011; 121: 1822–1826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 2009; 17: 1453–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368: 1509–1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5: 177ra38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ahmadzadeh M, Rosenberg SA. IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 2006; 107: 2409–2414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mor F, Cohen IR. IL-2 rescues antigen-specific T cells from radiation or dexamethasone-induced apoptosis. Correlation with induction of Bcl-2. J Immunol 1996; 156: 515–522.

    CAS  PubMed  Google Scholar 

  13. Mueller DL, Seiffert S, Fang W, Behrens TW. Differential regulation of bcl-2 and bcl-x by CD3, CD28, and the IL-2 receptor in cloned CD4+ helper T cells. A model for the long-term survival of memory cells. J Immunol 1996; 156: 1764–1771.

    CAS  PubMed  Google Scholar 

  14. Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol 2014; 192: 5451–5458.

    Article  CAS  PubMed  Google Scholar 

  15. Chang AE, Li Q, Jiang G, Sayre DM, Braun TM, Redman BG. Phase II trial of autologous tumor vaccination, anti-CD3-activated vaccine-primed lymphocytes, and interleukin-2 in stage IV renal cell cancer. J Clin Oncol 2003; 21: 884–890.

    Article  CAS  PubMed  Google Scholar 

  16. Li Q, Grover AC, Donald EJ, Carr A, Yu J, Whitfield J et al. Simultaneous targeting of CD3 on T cells and CD40 on B or dendritic cells augments the antitumor reactivity of tumor-primed lymph node cells. J Immunol 2005; 175: 1424–1432.

    Article  CAS  PubMed  Google Scholar 

  17. Macgregor JN, Li Q, Chang AE, Braun TM, Hughes DP, McDonagh KT. Ex vivo culture with interleukin (IL)-12 improves CD8(+) T-cell adoptive immunotherapy for murine leukemia independent of IL-18 or IFN-gamma but requires perforin. Cancer Res 2006; 66: 4913–4921.

    Article  CAS  PubMed  Google Scholar 

  18. Mule JJ, Shu S, Schwarz SL, Rosenberg SA. Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science 1984; 225: 1487–1489.

    Article  CAS  PubMed  Google Scholar 

  19. Yannelli JR, Hyatt C, McConnell S, Hines K, Jacknin L, Parker L et al. Growth of tumor-infiltrating lymphocytes from human solid cancers: summary of a 5-year experience. Int J Cancer 1996; 65: 413–421.

    Article  CAS  PubMed  Google Scholar 

  20. Emtage PC, Lo AS, Gomes EM, Liu DL, Gonzalo-Daganzo RM, Junghans RP. Second-generation anti-carcinoembryonic antigen designer T cells resist activation-induced cell death, proliferate on tumor contact, secrete cytokines, and exhibit superior antitumor activity in vivo: a preclinical evaluation. Clin Cancer Res 2008; 14: 8112–8122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brocker T. Chimeric Fv-zeta or Fv-epsilon receptors are not sufficient to induce activation or cytokine production in peripheral T cells. Blood 2000; 96: 1999–2001.

    Article  CAS  PubMed  Google Scholar 

  22. Pinthus JH, Waks T, Kaufman-Francis K, Schindler DG, Harmelin A, Kanety H et al. Immuno-gene therapy of established prostate tumors using chimeric receptor-redirected human lymphocytes. Cancer Res 2003; 63: 2470–2476.

    CAS  PubMed  Google Scholar 

  23. Lo AS, Ma Q, Liu DL, Junghans RP. Anti-GD3 chimeric sFv-CD28/T-cell receptor zeta designer T cells for treatment of metastatic melanoma and other neuroectodermal tumors. Clin Cancer Res 2010; 16: 2769–2780.

    Article  CAS  PubMed  Google Scholar 

  24. Moeller M, Haynes NM, Kershaw MH, Jackson JT, Teng MW, Street SE et al. Adoptive transfer of gene-engineered CD4+ helper T cells induces potent primary and secondary tumor rejection. Blood 2005; 106: 2995–3003.

    Article  CAS  PubMed  Google Scholar 

  25. Moeller M, Kershaw MH, Cameron R, Westwood JA, Trapani JA, Smyth MJ et al. Sustained antigen-specific antitumor recall response mediated by gene-modified CD4+ T helper-1 and CD8+ T cells. Cancer Res 2007; 67: 11428–11437.

    Article  CAS  PubMed  Google Scholar 

  26. Jensen MC, Popplewell L, Cooper LJ, DiGiusto D, Kalos M, Ostberg JR et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant 2010; 16: 1245–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Junghans RP, Ma Q, Rathore R, Gomes EM, Bais AJ, Lo AS et al. Phase I trial of anti-PSMA designer CAR-T cells in prostate cancer: Possible role for interacting interleukin 2-T cell pharmacodynamics as a determinant of clinical response. Prostate 2016; 76: 1257–1270.

    Article  CAS  PubMed  Google Scholar 

  28. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 2006; 12 (20 Pt 1): 6106–6115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grabstein KH, Eisenman J, Shanebeck K, Rauch C, Srinivasan S, Fung V et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 1994; 264: 965–968.

    Article  CAS  PubMed  Google Scholar 

  30. Carson WE, Giri JG, Lindemann MJ, Linett ML, Ahdieh M, Paxton R et al. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med 1994; 180: 1395–1403.

    Article  CAS  PubMed  Google Scholar 

  31. Waldmann TA. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 2006; 6: 595–601.

    Article  CAS  PubMed  Google Scholar 

  32. Becknell B, Caligiuri MA. Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv Immunol 2005; 86: 209–239.

    Article  CAS  PubMed  Google Scholar 

  33. Yamasaki S, Maeda M, Ohshima K, Kikuchi M, Otsuka T, Harada M. Growth and apoptosis of human natural killer cell neoplasms: role of interleukin-2/15 signaling. Leuk Res 2004; 28: 1023–1031.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang J, Sun R, Wei H, Zhang J, Tian Z. Characterization of interleukin-15 gene-modified human natural killer cells: implications for adoptive cellular immunotherapy. Haematologica 2004; 89: 338–347.

    CAS  PubMed  Google Scholar 

  35. Marks-Konczalik J, Dubois S, Losi JM, Sabzevari H, Yamada N, Feigenbaum L et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci USA 2000; 97: 11445–11450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jakobisiak M, Golab J, Lasek W. Interleukin 15 as a promising candidate for tumor immunotherapy. Cytokine Growth Factor Rev 2011; 22: 99–108.

    Article  CAS  PubMed  Google Scholar 

  37. Brentjens RJ, Latouche JB, Santos E, Marti F, Gong MC, Lyddane C et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 2003; 9: 279–286.

    Article  CAS  PubMed  Google Scholar 

  38. Numbenjapon T, Serrano LM, Singh H, Kowolik CM, Olivares S, Gonzalez N et al. Characterization of an artificial antigen-presenting cell to propagate cytolytic CD19-specific T cells. Leukemia 2006; 20: 1889–1892.

    Article  CAS  PubMed  Google Scholar 

  39. Numbenjapon T, Serrano LM, Chang WC, Forman SJ, Jensen MC, Cooper LJ. Antigen-independent and antigen-dependent methods to numerically expand CD19-specific CD8+ T cells. Exp Hematol 2007; 35: 1083–1090.

    Article  CAS  PubMed  Google Scholar 

  40. Ramanayake S, Bilmon I, Bishop D, Dubosq MC, Blyth E, Clancy L et al. Low-cost generation of Good Manufacturing Practice-grade CD19-specific chimeric antigen receptor-expressing T cells using piggyBac gene transfer and patient-derived materials. Cytotherapy 2015; 17: 1251–1267.

    Article  CAS  PubMed  Google Scholar 

  41. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF et al. A human memory T cell subset with stem cell-like properties. Nat Med 2011; 17: 1290–1297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 2009; 15: 808–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu Y, Zhang M, Ramos CA, Durett A, Liu E, Dakhova O et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood 2014; 123: 3750–3759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nishio N, Dotti G. Oncolytic virus expressing RANTES and IL-15 enhances function of CAR-modified T cells in solid tumors. Oncoimmunology 2015; 4: e988098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Till BG, Jensen MC, Wang J, Chen EY, Wood BL, Greisman HA et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 2008; 112: 2261–2271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 2008; 14: 1264–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sadelain M, Brentjens R, Riviere I. The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol 2009; 21: 215–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vera J, Savoldo B, Vigouroux S, Biagi E, Pule M, Rossig C et al. T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood 2006; 108: 3890–3897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res 2006; 66: 10995–11004.

    Article  CAS  PubMed  Google Scholar 

  50. Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol 2002; 20: 70–75.

    Article  CAS  PubMed  Google Scholar 

  51. Imai C, Mihara K, Andreansky M, Nicholson IC, Pui CH, Geiger TL et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 2004; 18: 676–684.

    Article  CAS  PubMed  Google Scholar 

  52. Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 2009; 17: 1453–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA 2009; 106: 3360–3365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tammana S, Huang X, Wong M, Milone MC, Ma L, Levine BL et al. 4-1BB and CD28 signaling plays a synergistic role in redirecting umbilical cord blood T cells against B-cell malignancies. Hum Gene Ther 2010; 21: 75–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao Y, Wang QJ, Yang S, Kochenderfer JN, Zheng Z, Zhong X et al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J Immunol 2009; 183: 5563–5574.

    Article  CAS  PubMed  Google Scholar 

  56. Wang J, Jensen M, Lin Y, Sui X, Chen E, Lindgren CG et al. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum Gene Ther 2007; 18: 712–725.

    Article  CAS  PubMed  Google Scholar 

  57. Pule MA, Straathof KC, Dotti G, Heslop HE, Rooney CM, Brenner MK. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 2005; 12: 933–941.

    Article  CAS  PubMed  Google Scholar 

  58. Hoyos V, Savoldo B, Quintarelli C, Mahendravada A, Zhang M, Vera J et al. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 2010; 24: 1160–1170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huntington ND, Puthalakath H, Gunn P, Naik E, Michalak EM, Smyth MJ et al. Interleukin 15-mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nat Immunol 2007; 8: 856–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bianchi T, Gasser S, Trumpp A, MacDonald HR. c-Myc acts downstream of IL-15 in the regulation of memory CD8 T-cell homeostasis. Blood 2006; 107: 3992–3999.

    Article  CAS  PubMed  Google Scholar 

  61. Wu TS, Lee JM, Lai YG, Hsu JC, Tsai CY, Lee YH et al. Reduced expression of Bcl-2 in CD8+ T cells deficient in the IL-15 receptor alpha-chain. J Immunol 2002; 168: 705–712.

    Article  CAS  PubMed  Google Scholar 

  62. Wang W, Ma Y, Li J, Shi HS, Wang LQ, Guo FC et al. Specificity redirection by CAR with human VEGFR-1 affinity endows T lymphocytes with tumor-killing ability and anti-angiogenic potency. Gene Ther 2013; 20: 970–978.

    Article  CAS  PubMed  Google Scholar 

  63. Berger C, Berger M, Hackman RC, Gough M, Elliott C, Jensen MC et al. Safety and immunologic effects of IL-15 administration in nonhuman primates. Blood 2009; 114: 2417–2426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Munger W, DeJoy SQ, Jeyaseelan R, Sr., Torley LW, Grabstein KH, Eisenmann J et al. Studies evaluating the antitumor activity and toxicity of interleukin-15, a new T cell growth factor: comparison with interleukin-2. Cell Immunol 1995; 165: 289–293.

    Article  CAS  PubMed  Google Scholar 

  65. Wilkie S, Burbridge SE, Chiapero-Stanke L, Pereira AC, Cleary S, van der Stegen SJ et al. Selective expansion of chimeric antigen receptor-targeted T-cells with potent effector function using interleukin-4. J Biol Chem 2010; 285: 25538–25544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Papa S, van Schalkwyk M, Maher J. Clinical evaluation of ErbB-targeted CAR T-cells, following intracavity delivery in patients with ErbB-expressing solid tumors. Methods Mol Biol 2015; 1317: 365–382.

    Article  PubMed  Google Scholar 

  67. Boyman O, Purton JF, Surh CD, Sprent J. Cytokines and T-cell homeostasis. Curr Opin Immunol 2007; 19: 320–326.

    Article  CAS  PubMed  Google Scholar 

  68. Gargett T, Brown MP. Different cytokine and stimulation conditions influence the expansion and immune phenotype of third-generation chimeric antigen receptor T cells specific for tumor antigen GD2. Cytotherapy 2015; 17: 487–495.

    Article  CAS  PubMed  Google Scholar 

  69. Casucci M, Nicolis di Robilant B, Falcone L, Camisa B, Norelli M, Genovese P et al. CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood 2013; 122: 3461–3472.

    Article  CAS  PubMed  Google Scholar 

  70. Markley JC, Sadelain M. IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cell-mediated rejection of systemic lymphoma in immunodeficient mice. Blood 2010; 115: 3508–3519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sun JC, Lehar SM, Bevan MJ. Augmented IL-7 signaling during viral infection drives greater expansion of effector T cells but does not enhance memory. J Immunol 2006; 177: 4458–4463.

    Article  CAS  PubMed  Google Scholar 

  72. Perna SK, Pagliara D, Mahendravada A, Liu H, Brenner MK, Savoldo B et al. Interleukin-7 mediates selective expansion of tumor-redirected cytotoxic T lymphocytes (CTLs) without enhancement of regulatory T-cell inhibition. Clin Cancer Res 2014; 20: 131–139.

    Article  CAS  PubMed  Google Scholar 

  73. Trinchieri G, Pflanz S, Kastelein RA. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 2003; 19: 641–644.

    Article  CAS  PubMed  Google Scholar 

  74. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003; 3: 133–146.

    Article  CAS  PubMed  Google Scholar 

  75. Trinchieri G. Immunobiology of interleukin-12. Immunol Res 1998; 17: 269–278.

    Article  CAS  PubMed  Google Scholar 

  76. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O'Garra A, Murphy KM. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993; 260: 547–549.

    Article  CAS  PubMed  Google Scholar 

  77. Curtsinger JM, Lins DC, Mescher MF. Signal 3 determines tolerance versus full activation of naive CD8 T cells: dissociating proliferation and development of effector function. J Exp Med 2003; 197: 1141–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kalinski P, Hilkens CM, Wierenga EA, Kapsenberg ML. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 1999; 20: 561–567.

    Article  CAS  PubMed  Google Scholar 

  79. Yoo JK, Cho JH, Lee SW, Sung YC. IL-12 provides proliferation and survival signals to murine CD4+ T cells through phosphatidylinositol 3-kinase/Akt signaling pathway. J Immunol 2002; 169: 3637–3643.

    Article  CAS  PubMed  Google Scholar 

  80. Hendrzak JA, Brunda MJ. Antitumor and antimetastatic activity of interleukin-12. Curr Topics Microbiol Immunol 1996; 213 (Pt 3): 65–83.

    CAS  Google Scholar 

  81. Wigginton JM, Gruys E, Geiselhart L, Subleski J, Komschlies KL, Park JW et al. IFN-gamma and Fas/FasL are required for the antitumor and antiangiogenic effects of IL-12/pulse IL-2 therapy. J Clin Invest 2001; 108: 51–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Leonard JP, Sherman ML, Fisher GL, Buchanan LJ, Larsen G, Atkins MB et al. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 1997; 90: 2541–2548.

    CAS  PubMed  Google Scholar 

  83. Car BD, Eng VM, Lipman JM, Anderson TD. The toxicology of interleukin-12: a review. Toxicol Pathol 1999; 27: 58–63.

    Article  CAS  PubMed  Google Scholar 

  84. Kang WK, Park C, Yoon HL, Kim WS, Yoon SS, Lee MH et al. Interleukin 12 gene therapy of cancer by peritumoral injection of transduced autologous fibroblasts: outcome of a phase I study. Hum Gene Ther 2001; 12: 671–684.

    Article  CAS  PubMed  Google Scholar 

  85. Heinzerling L, Burg G, Dummer R, Maier T, Oberholzer PA, Schultz J et al. Intratumoral injection of DNA encoding human interleukin 12 into patients with metastatic melanoma: clinical efficacy. Hum Gene Ther 2005; 16: 35–48.

    Article  CAS  PubMed  Google Scholar 

  86. Chmielewski M, Hombach AA, Abken H. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol Rev 2014; 257: 83–90.

    Article  CAS  PubMed  Google Scholar 

  87. Curtsinger JM, Lins DC, Mescher MF. Signal 3 determines tolerance versus full activation of naive CD8 T cells: dissociating proliferation and development of effector function. J Exp Med 2003; 197: 1141–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang L, Kerkar SP, Yu Z, Zheng Z, Yang S, Restifo NP et al. Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol Ther 2011; 19: 751–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Koneru M, Purdon TJ, Spriggs D, Koneru S, Brentjens RJ. IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors. Oncoimmunology 2015; 4: e994446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Chinnasamy D, Yu Z, Kerkar SP, Zhang L, Morgan RA, Restifo NP et al. Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin Cancer Res 2012; 18: 1672–1683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chmielewski M, Kopecky C, Hombach AA, Abken H. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res 2011; 71: 5697–5706.

    Article  CAS  PubMed  Google Scholar 

  92. You F, Jiang L, Zhang B, Lu Q, Zhou Q, Liao X et al. Phase 1 clinical trial demonstrated that MUC1 positive metastatic seminal vesicle cancer can be effectively eradicated by modified Anti-MUC1 chimeric antigen receptor transduced T cells. Sci China Life Sci 2016; 59: 386–397.

    Article  CAS  PubMed  Google Scholar 

  93. Koneru M, O'Cearbhaill R, Pendharkar S, Spriggs DR, Brentjens RJ. A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16(ecto) directed chimeric antigen receptors for recurrent ovarian cancer. J Trans Med 2015; 13: 102.

    Article  CAS  Google Scholar 

  94. Fan H, Walters CS, Dunston GM, Tackey R. IL-12 plays a significant role in the apoptosis of human T cells in the absence of antigenic stimulation. Cytokine 2002; 19: 126–137.

    Article  CAS  PubMed  Google Scholar 

  95. Pegram HJ, Lee JC, Hayman EG, Imperato GH, Tedder TF, Sadelain M et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 2012; 119: 4133–4141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kerkar SP, Muranski P, Kaiser A, Boni A, Sanchez-Perez L, Yu Z et al. Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer Res 2010; 70: 6725–6734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Spolski R, Leonard WJ. Interleukin-21: a double-edged sword with therapeutic potential. Nat Rev Drug Discov 2014; 13: 379–395.

    Article  CAS  PubMed  Google Scholar 

  98. Hashmi MH, Van Veldhuizen PJ. Interleukin-21: updated review of Phase I and II clinical trials in metastatic renal cell carcinoma, metastatic melanoma and relapsed/refractory indolent non-Hodgkin's lymphoma. Expert Opin Biol Ther 2010; 10: 807–817.

    Article  CAS  PubMed  Google Scholar 

  99. Li Y, Yee C. IL-21 mediated Foxp3 suppression leads to enhanced generation of antigen-specific CD8+ cytotoxic T lymphocytes. Blood 2008; 111: 229–235.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Moroz A, Eppolito C, Li Q, Tao J, Clegg CH, Shrikant PA. IL-21 enhances and sustains CD8+ T cell responses to achieve durable tumor immunity: comparative evaluation of IL-2, IL-15, and IL-21. J Immunol 2004; 173: 900–909.

    Article  CAS  PubMed  Google Scholar 

  101. Singh H, Figliola MJ, Dawson MJ, Olivares S, Zhang L, Yang G et al. Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using Sleeping Beauty system and artificial antigen presenting cells. PLoS ONE 2013; 8: e64138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Singh H, Figliola MJ, Dawson MJ, Huls H, Olivares S, Switzer K et al. Reprogramming CD19-specific T cells with IL-21 signaling can improve adoptive immunotherapy of B-lineage malignancies. Cancer Res 2011; 71: 3516–3527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Deniger DC, Yu J, Huls MH, Figliola MJ, Mi T, Maiti SN et al. Sleeping beauty transposition of chimeric antigen receptors targeting receptor tyrosine kinase-like orphan receptor-1 (ROR1) into diverse memory T-cell populations. PLoS ONE 2015; 10: e0128151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest 2016; 126: 3130–3144.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

This work was supported by the National High-tech R&D program (863 Program) 2014AA020704 and the National Natural and Scientific Foundation of China, 81572981/H1611, 81400057/H0111, 81123003/H1604 and 81201789/H1611.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Li, D., Qin, DY. et al. Interleukin-armed chimeric antigen receptor-modified T cells for cancer immunotherapy. Gene Ther 25, 192–197 (2018). https://doi.org/10.1038/gt.2017.81

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2017.81

This article is cited by

Search

Quick links