Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Enabling Technologies
  • Published:

TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer

Abstract

Adoptive immunotherapy with T lymphocytes expressing transgenic T-cell receptors (TCRs) has shown significant clinical efficacy in various malignant diseases. However, concurrent expression of endogenous and transgenic TCRs in one and the same T cell may impair efficacy and cause safety problems owing to mispairings. The most elegant approach to address these issues is the complete shutoff of the endogenous receptor chains by genome editing. To this end, we designed TCR-α and TCR-β-specific pairs of transcription activator-like effector nucleases (TALENs). TALENs were delivered into T cells using an optimized messenger RNA-electroporation protocol. Based thereon, we obtained precise and highly efficient knockout (KO) in Jurkat (TCR-α: 59.7±4.0%, TCR-β: 37.4±7.3%) as well as primary T cells (TCR-α: 58.0±15.0%, TCR-β: 41.0±17.6%). Moreover, a successive KO strategy for the endogenous TCR chains combined with subsequent transduction of the respective chains of an Influenza virus-specific model TCR led to complete reprogramming of T cells with strongly improved expression and functionality of transgenic TCRs. In conclusion, we have developed novel means for the efficient genome editing in primary T lymphocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

TCR:

T-cell receptor

Flu:

Influenza

Flu-M:

Influenza matrix protein

TALEN:

TAL effector nuclease

References

  1. Gustafsson Å, Levitsky V, Zou J, Frisan T, Dalianis T, Ljungman P et al. Epstein-Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplant lymphoproliferative disease: prophylactic infusion of EBV-specific cytotoxic T cells. Blood 2000; 95: 807–814.

    CAS  PubMed  Google Scholar 

  2. Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 2003; 362: 1375–1377.

    Article  PubMed  Google Scholar 

  3. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME, Mark E . Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008; 8: 299–308.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Gross G, Waks T, Eshhar Z . Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 1989; 86: 10024–10028.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011; 29: 917–924.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Porter DL, Levine BL, Kalos M, Bagg A, June CH . Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365: 725–733.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368: 1509–1518.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kalos M . Muscle CARs and TcRs: turbo-charged technologies for the (T cell) masses. Cancer Immunol Immunother 2012; 61: 127–135.

    Article  CAS  PubMed  Google Scholar 

  10. Stauss HJ, Morris EC . Immunotherapy with gene-modified T cells: limiting side effects provides new challenges. Gene Therapy 2013; 20: 1029–1032.

    Article  CAS  PubMed  Google Scholar 

  11. Berdien B, Reinhard H, Meyer S, Spöck S, Kröger N, Atanackovic D et al. Influenza virus-specific TCR-transduced T cells as a model for adoptive immunotherapy. Hum Vaccin Immunother 2013; 9: 1205–1216.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Provasi E, Genovese P, Lombardo A, Magnani Z, Liu P-Q, Reik A et al. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat Med 2012; 18: 807–815.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Heemskerk MHM, Hagedoorn RS, van der Hoorn MAWG, van der Veken LT, Hoogeboom M, Kester MGD et al. Efficiency of T-cell receptor expression in dual-specific T cells is controlled by the intrinsic qualities of the TCR chains within the TCR-CD3 complex. Blood 2007; 109: 235–243.

    Article  CAS  PubMed  Google Scholar 

  14. Bendle GM, Linnemann C, Hooijkaas AI, Bies L, de Witte MA, Jorritsma A et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat Med 2010; 16: 565–570.

    Article  CAS  PubMed  Google Scholar 

  15. Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA, Morgan RA . Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res 2006; 66: 8878–8886.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Bialer G, Horovitz-Fried M, Ya’acobi S, Morgan RA, Cohen CJ . Selected murine residues endow human TCR with enhanced tumor recognition. J Immunol 2010; 184: 6232–6241.

    Article  CAS  PubMed  Google Scholar 

  17. Sommermeyer D, Uckert W . Minimal amino acid exchange in human TCR constant regions fosters improved function of TCR gene-modified T cells. J Immunol 2010; 184: 6223–6231.

    Article  CAS  PubMed  Google Scholar 

  18. Cohen CJ, Li YF, El-Gamil M, Robbins PF, Rosenberg SA, Morgan RA . Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res 2007; 67: 3898–3903.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kuball J, Dossett ML, Wolfl M, Ho WY, Voss R-H, Fowler C et al. Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 2007; 109: 2331–2338.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Scholten KBJ, Kramer D, Kueter EWM, Graf M, Schoedl T, Meijer CJLM et al. Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells. Clin Immunol 2006; 119: 135–145.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang L, Morgan RA . Genetic engineering with T cell receptors. Adv Drug Deliv Rev 2012; 64: 756–762.

    Article  CAS  PubMed  Google Scholar 

  22. Okamoto S, Mineno J, Ikeda H, Fujiwara H, Yasukawa M, Shiku H et al. Improved expression and reactivity of transduced tumor-specific TCRs in human lymphocytes by specific silencing of endogenous TCR. Cancer Res 2009; 69: 9003–9011.

    Article  CAS  PubMed  Google Scholar 

  23. Moscou MJ, Bogdanove AJ . A Simple Cipher Governs DNA Recognition by TAL Effectors. Science 2009; 326: 1501.

    Article  CAS  PubMed  Google Scholar 

  24. Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu J-K et al. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 2012; 335: 720–723.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, Vandyk JK et al. TAL effector-nucleotide targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 2012; 40: W117–W122.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 2011; 39: e82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Weber K, Bartsch U, Stocking C, Fehse B . A multicolor panel of novel lentiviral ‘gene ontology’ (LeGO) vectors for functional gene analysis. Mol Ther 2008; 16: 698–706.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Z, Troilo PJ, Wang X, Griffiths TG, Pacchione SJ, Barnum AB et al. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Therapy 2004; 11: 711–721.

    Article  CAS  PubMed  Google Scholar 

  29. Van Loenen MM, de Boer R, Amir AL, Hagedoorn RS, Volbeda GL, Willemze R et al. Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc Natl Acad Sci USA 2010; 107: 10972–10977.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Sung YH, Baek I-J, Kim DH, Jeon J, Lee J, Lee K et al. Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol 2013; 31: 23–24.

    Article  CAS  PubMed  Google Scholar 

  31. Huang X, Haley K, Wong M, Guo H, Lu C, Wilber A et al. Unexpectedly high copy number of random integration but low frequency of persistent expression of the Sleeping Beauty transposase after trans delivery in primary human T cells. Hum Gene Ther 2010; 21: 1577–1590.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Stephen SL, Montini E, Sivanandam VG, Al-Dhalimy M, Kestler HA, Finegold M et al. Chromosomal integration of adenoviral vector DNA in vivo. J Virol 2010; 84: 9987–9994.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Miller DG, Rutledge EA, Russell DW . Chromosomal effects of adeno-associated virus vector integration. Nat Genet 2002; 30: 147–148.

    Article  CAS  PubMed  Google Scholar 

  34. Mátrai J, Cantore A, Bartholomae CC, Annoni A, Wang W, Acosta-Sanchez A et al. Hepatocyte-targeted expression by integrase-defective lentiviral vectors induces antigen-specific tolerance in mice with low genotoxic risk. Hepatology 2011; 53: 1696–1707.

    Article  PubMed  Google Scholar 

  35. Riet T, Holzinger A, Dörrie J, Schaft N, Schuler G, Abken H . Nonviral RNA transfection to transiently modify T cells with chimeric antigen receptors for adoptive therapy. Methods Mol Biol 2013; 969: 187–201.

    Article  CAS  PubMed  Google Scholar 

  36. Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 2011; 29: 816–823.

    Article  CAS  PubMed  Google Scholar 

  37. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 2013; 31: 822–826.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Almåsbak H, Rian E, Hoel HJ, Pulè M, Wälchli S, Kvalheim G et al. Transiently redirected T cells for adoptive transfer. Cytotherapy 2011; 13: 629–640.

    Article  PubMed  Google Scholar 

  39. Newrzela S, Cornils K, Li Z, Baum C, Brugman MH, Hartmann M et al. Resistance of mature T cells to oncogene transformation. Blood 2008; 112: 2278–2286.

    Article  CAS  PubMed  Google Scholar 

  40. Scholler J, Brady TL, Binder-Scholl G, Hwang WT, Plesa G, Hege KM et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med 2012; 4: 132ra153.

    Article  Google Scholar 

  41. Fehse B, Schade UM, Li Z, Uhde A, Koch S, Goller B et al. Highly-efficient gene transfer with retroviral vectors into human T lymphocytes on fibronectin. Br J Haematol 1998; 102: 566–574.

    Article  CAS  PubMed  Google Scholar 

  42. Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F . A transcription activator-like effector toolbox for genome engineering. Nat Protoc 2012; 7: 171–192.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Weber K, Mock U, Petrowitz B, Bartsch U, Fehse B . Lentiviral gene ontology (LeGO) vectors equipped with novel drug-selectable fluorescent proteins: new building blocks for cell marking and multi-gene analysis. Gene Therapy 2010; 17: 511–520.

    Article  CAS  PubMed  Google Scholar 

  44. Janeway CA, Travers P, Walport M, Shlomchik MJ . Immunobiology: The Immune System in Health and Disease. Garland Science: New York, 2004.

    Google Scholar 

Download references

Acknowledgements

This work has been part of the PhD thesis of BB at the MIN faculty of the University of Hamburg. We wish to thank Johannes Polke, Tanja Sonntag, Tim Aranyossy and the FACS Core Facility of the University Medical Center Hamburg-Eppendorf for expert technical assistance and the Department of Transfusion Medicine of the UMC Hamburg-Eppendorf for kind help. Our work was supported by a grant of the Deutsche Krebshilfe (to BF and DA) and, in part, the SFB841/Z2 and a post-doc grant to UM within the Forschungsförderung Medizin (FFM) program of the Medical faculty of the UMC Hamburg-Eppendorf.

Author contributions

BB designed and performed experiments; UM helped with design and application of TALENs; DA with T-cell assays; BF designed the study and wrote the manuscript. All authors have read the manuscript and confirmed their authorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Fehse.

Ethics declarations

Competing interests

The authors declare no conflict of Interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berdien, B., Mock, U., Atanackovic, D. et al. TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer. Gene Ther 21, 539–548 (2014). https://doi.org/10.1038/gt.2014.26

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.26

This article is cited by

Search

Quick links