Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncolytic measles virus strains have significant antitumor activity against glioma stem cells

Abstract

Glioblastoma (GBM) is the most common primary brain tumor in adults and has a dismal prognosis despite multimodality treatment. Given the resistance of glioma stem cells (GSC) to chemotherapy and radiation therapy, their eradication could prevent tumor recurrence. We sought to evaluate the antitumor activity of measles virus (MV) derivatives against GSC. We generated neurosphere cultures from patient-derived primary tumor GBM xenografts, and we characterized them for the GSC markers CD133, SOX2, Nestin, ATF5 and OLIG2. Using the MV-strains MV-GFP, MV-CEA and MV-NIS we demonstrated infection, viral replication and significant cytopathic effect in vitro against GSC lines. In tumorigenicity experiments, GBM44 GSC were infected with MV in vitro and subsequently implanted into the right caudate nucleus of nude mice: significant prolongation of survival in mice implanted with infected GSC was observed, compared with mock-infected controls (P=0.0483). In therapy experiments in GBM6 and GBM12 GSC xenograft models, there was significant prolongation of survival in MV-GFP-treated animals compared with inactivated virus-treated controls (GBM6 P=0.0021, GBM12 P=0.0416). Abundant syncytia and viral replication was demonstrated in tumors of MV-treated mice. Measles virus derivatives have significant antitumor activity against glioma-derived stem cells in vitro and in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Siegel R, Ward E, Brawley O, Jemal A . Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA: a Cancer Journal for Clinicians 2011; 61: 212–236.

    Google Scholar 

  2. Alcantara Llaguno S, Chen J, Kwon CH, Jackson EL, Li Y, Burns DK et al. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer cell 2009; 15: 45–56.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 2006; 66: 7843–7848.

    Article  CAS  PubMed  Google Scholar 

  4. Chen R, Nishimura MC, Bumbaca SM, Kharbanda S, Forrest WF, Kasman IM et al. A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 2010; 17: 362–375.

    Article  CAS  PubMed  Google Scholar 

  5. Allen C, Paraskevakou G, Liu C, Iankov ID, Msaouel P, Zollman P et al. Oncolytic measles virus strains in the treatment of gliomas. Expert Opinion Biol Ther 2008; 8: 213–220.

    Article  CAS  Google Scholar 

  6. Paraskevakou G, Allen C, Nakamura T, Zollman P, James CD, Peng KW et al. Epidermal growth factor receptor (EGFR)-retargeted measles virus strains effectively target EGFR- or EGFRvIII expressing gliomas. Mol Ther 2007; 15: 677–686.

    Article  CAS  PubMed  Google Scholar 

  7. Phuong LK, Allen C, Peng KW, Giannini C, Greiner S, TenEyck CJ et al. Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res 2003; 63: 2462–2469.

    CAS  PubMed  Google Scholar 

  8. Dingli D, Peng KW, Harvey ME, Greipp PR, O'Connor MK, Cattaneo R et al. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 2004; 103: 1641–1646.

    Article  CAS  PubMed  Google Scholar 

  9. Msaouel P, Iankov ID, Allen C, Morris JC, von Messling V, Cattaneo R et al. Engineered measles virus as a novel oncolytic therapy against prostate cancer. Prostate 2009; 69: 82–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peng KW, Facteau S, Wegman T, O'Kane D, Russell SJ . Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides. Nature Med 2002; 8: 527–531.

    Article  CAS  PubMed  Google Scholar 

  11. Carlson BL, Pokorny JL, Schroeder MA, Sarkaria JN . Establishment, maintenance and in vitro and in vivo applications of primary human glioblastoma multiforme (GBM) xenograft models for translational biology studies and drug discovery. Curr Protocols Pharm/editorial board, S.J. Enna 2011; Chapter 14: Unit 14 16.

  12. Giannini C, Sarkaria JN, Saito A, Uhm JH, Galanis E, Carlson BL et al. Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro Oncol 2005; 7: 164–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352: 987–996.

    Article  CAS  PubMed  Google Scholar 

  14. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ et al. CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 2007; 67: 4010–4015.

    Article  CAS  PubMed  Google Scholar 

  15. Hambardzumyan D, Squatrito M, Holland EC . Radiation resistance and stem-like cells in brain tumors. Cancer Cell 2006; 10: 454–456.

    Article  CAS  PubMed  Google Scholar 

  16. Liu Q, Nguyen DH, Dong Q, Shitaku P, Chung K, Liu OY et al. Molecular properties of CD133+ glioblastoma stem cells derived from treatment-refractory recurrent brain tumors. J Neuro-oncol 2009; 94: 1–19.

    Article  Google Scholar 

  17. Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T, Hamou MF et al. Stem cell-related ‘self-renewal’ signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 2008; 26: 3015–3024.

    Article  CAS  PubMed  Google Scholar 

  18. Sakariassen PO, Immervoll H, Chekenya M . Cancer stem cells as mediators of treatment resistance in brain tumors: status and controversies. Neoplasia 2007; 9: 882–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ying M, Wang S, Sang Y, Sun P, Lal B, Goodwin CR et al. Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition. Oncogene 2011; 30: 3454–3467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kanai R, Wakimoto H, Martuza RL, Rabkin SD . A novel oncolytic herpes simplex virus that synergizes with phosphoinositide 3-kinase/akt pathway inhibitors to target glioblastoma stem cells. Clin Cancer Res 2011; 17: 3686–3696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wakimoto H, Kesari S, Farrell CJ, Curry WT, Zaupa C, Aghi M et al. Human glioblastoma-derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Res 2009; 69: 3472–3481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dhiman N, Jacobson RM, Poland GA . Measles virus receptors: SLAM and CD46. Rev Med Virol 2004; 14: 217–229.

    Article  CAS  PubMed  Google Scholar 

  23. Yanagi Y, Takeda M, Ohno S. . Measles virus: cellular receptors, tropism and pathogenesis. J Gen Virol 2006; 87: 2767–2779.

    Article  CAS  PubMed  Google Scholar 

  24. Schneider U, von Messling V, Devaux P, Cattaneo R . Efficiency of measles virus entry and dissemination through different receptors. J Virol 2002; 76: 7460–7467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yanagi Y . The cellular receptor for measles virus. Uirusu 2001; 51: 201–208.

    Article  CAS  PubMed  Google Scholar 

  26. Ulasov IV, Tyler MA, Zheng S, Han Y, Lesniak MS . CD46represents a target for adenoviral gene therapy of malignant glioma. Hum Gene Ther 2006; 17: 556–564.

    Article  CAS  PubMed  Google Scholar 

  27. Adams EM, Brown MC, Nunge M, Krych M, Atkinson JP . Contribution of the repeating domains of membrane cofactor protein (CD46) of the complement system to ligand binding and cofactor activity. J Immunol 1991; 147: 3005–3011.

    CAS  PubMed  Google Scholar 

  28. Fishelson Z . Complement C3: a molecular mosaic of binding sites. Mol Immunol 1991; 28: 545–552.

    Article  CAS  PubMed  Google Scholar 

  29. Oglesby TJ, White D, Tedja I, Liszewski K, Wright L, Van den Bogarde J et al. Protection of mammalian cells from complement-mediated lysis by transfection of human membrane cofactor protein and decay-accelerating factor. Trans Assoc Am Phys 1991; 104: 164–172.

    CAS  PubMed  Google Scholar 

  30. Galanis E, O'Neill BP, Piepgras D, Meyer FB, Uhm JH, Marks R et al. Phase I intratumoral and resection cavity administration of a measles virus derivative expressing the human carcionembroyonic antigen (CEA) in patients with recurrent glioblastoma multiforme. (Abstract MA-15). Neuro-Oncology 2008; 10: 819.

    Google Scholar 

  31. Muhlebach MD, Mateo M, Sinn PL, Prufer S, Uhlig KM, Leonard VH et al. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 2011; 480: 530–533.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Derycke MS, Pambuccian SE, Gilks CB, Kalloger SE, Ghidouche A, Lopez M et al. Nectin 4 overexpression in ovarian cancer tissues and serum: potential role as a serum biomarker. Am J Clin Pathol 2010; 134: 835–845.

    Article  CAS  PubMed  Google Scholar 

  33. Fabre-Lafay S, Garrido-Urbani S, Reymond N, Goncalves A, Dubreuil P, Lopez M . Nectin-4, a new serological breast cancer marker, is a substrate for tumor necrosis factor-alpha-converting enzyme (TACE)/ADAM-17. J Biol Chem 2005; 280: 19543–19550.

    Article  CAS  PubMed  Google Scholar 

  34. Takano A, Ishikawa N, Nishino R, Masuda K, Yasui W, Inai K et al. Identification of nectin-4 oncoprotein as a diagnostic and therapeutic target for lung cancer. Cancer Res 2009; 69: 6694–6703.

    Article  CAS  PubMed  Google Scholar 

  35. Togashi H, Sakisaka T, Takai Y . Cell adhesion molecules in the central nervous system. Cell Adh Migr 2009; 3: 29–35.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Giannini C, Sarkaria JN, Saito A, Uhm JH, Galanis E, Carlson BL et al. Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro-oncology 2005; 7: 164–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Msaouel P, Iankov ID, Allen C, Aderca I, Federspiel MJ, Tindall DJ et al. Noninvasive imaging and radiovirotherapy of prostate cancer using an oncolytic measles virus expressing the sodium iodide symporter. Mol Ther 2009; 17: 2041–2048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by NIH Grants R01 CA 154348 and NIH P50 CA 108961.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Galanis.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, C., Opyrchal, M., Aderca, I. et al. Oncolytic measles virus strains have significant antitumor activity against glioma stem cells. Gene Ther 20, 444–449 (2013). https://doi.org/10.1038/gt.2012.62

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.62

Keywords

This article is cited by

Search

Quick links