Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Fecal metabolomics in pediatric spondyloarthritis implicate decreased metabolic diversity and altered tryptophan metabolism as pathogenic factors

Abstract

We have previously shown alterations in the composition of the gut microbiota in children with enthesitis-related arthritis (ERA). To explore the mechanisms by which an altered microbiota might predispose to arthritis, we performed metabolomic profiling of fecal samples of children with ERA. Fecal samples were collected from two cohorts of children with ERA and healthy control subjects. Nano-liquid chromatography—mass spectroscopy (LC-MS) was performed on the fecal water homogenates with identification based upon mass: charge ratios. Sequencing of the 16S ribosomal DNA (rDNA) on the same stool specimens was performed. In both sets of subjects, patients demonstrated lower diversity of ions and under-representation of multiple metabolic pathways, including the tryptophan metabolism pathway. For example, in the first cohort, out of 1500 negatively charged ions, 154 were lower in ERA patients, compared with only one that was higher. Imputed functional annotation of the 16S ribosomal DNA sequence data demonstrated significantly fewer microbial genes associated with metabolic processes in the patients compared with the controls (77 million versus 58 million, P=0.050). Diminished metabolic diversity and alterations in the tryptophan metabolism pathway may be a feature of ERA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Stoll ML . Gut microbes, immunity, and spondyloarthritis. Clin Immunol 2015; 159: 134–142.

    Article  CAS  PubMed  Google Scholar 

  2. Stoll ML, Kumar R, Morrow CD, Lefkowitz EJ, Cui X, Genin A et al. Altered microbiota associated with abnormal humoral immune responses to commensal organisms in enthesitis-related arthritis. Arthritis Res Ther 2014; 16: 486.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stebbings S, Munro K, Simon MA, Tannock G, Highton J, Harmsen H et al. Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatology (Oxford) 2002; 41: 1395–1401.

    Article  CAS  Google Scholar 

  4. Costello ME, Ciccia F, Willner D, Warrington N, Robinson PC, Gardiner B et al. Intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol 2015; 67: 686–691.

    Article  PubMed  Google Scholar 

  5. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Macarulla MT, Alberdi G, Gomez S, Tueros I, Bald C, Rodriguez VM et al. Effects of different doses of resveratrol on body fat and serum parameters in rats fed a hypercaloric diet. J Physiol Biochem 2009; 65: 369–376.

    Article  CAS  PubMed  Google Scholar 

  7. Bjerrum JT, Wang Y, Hao F, Coskun M, Ludwig C, Gunther U et al. Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn's disease and healthy individuals. Metabolomics 2015; 11: 122–133.

    Article  CAS  PubMed  Google Scholar 

  8. Marchesi JR, Holmes E, Khan F, Kochhar S, Scanlan P, Shanahan F et al. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res 2007; 6: 546–551.

    Article  CAS  PubMed  Google Scholar 

  9. Shiomi Y, Nishiumi S, Ooi M, Hatano N, Shinohara M, Yoshie T et al. GCMS-based metabolomic study in mice with colitis induced by dextran sulfate sodium. Inflamm Bowel Dis 2011; 17: 2261–2274.

    Article  PubMed  Google Scholar 

  10. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M . KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44: D457–D462.

    Article  CAS  PubMed  Google Scholar 

  11. Ma H, Sorokin A, Mazein A, Selkov A, Selkov E, Demin O et al. The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol 2007; 3: 135.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 2013; 31: 814–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kageyama G, Saegusa J, Irino Y, Tanaka S, Tsuda K, Takahashi S et al. Metabolomics analysis of saliva from patients with primary Sjogren's syndrome. Clin Exp Immunol 2015; 182: 149–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol 2015; 67: 128–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Michail S, Durbin M, Turner D, Griffiths AM, Mack DR, Hyams J et al. Alterations in the gut microbiome of children with severe ulcerative colitis. Inflamm Bowel Dis 2012; 18: 1799–1808.

    Article  PubMed  Google Scholar 

  16. Kang KY, Lee SH, Jung SM, Park SH, Jung BH, Ju JH . Downregulation of tryptophan-related metabolomic profile in rheumatoid arthritis synovial fluid. J Rheumatol 2015; 42: 2003–2011.

    Article  CAS  PubMed  Google Scholar 

  17. Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med 2016; 22: 598–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arvonen M, Berntson L, Pokka T, Karttunen TJ, Vahasalo P, Stoll ML . Gut microbiota-host interactions and juvenile idiopathic arthritis. Pediatr Rheumatol Online J 2016; 14: 44.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zheng X, Xie G, Zhao A, Zhao L, Yao C, Chiu NH et al. The footprints of gut microbial-mammalian co-metabolism. J Proteome Res 2011; 10: 5512–5522.

    Article  CAS  PubMed  Google Scholar 

  20. Stoll ML, Cron RQ . The microbiota in pediatric rheumatic disease: epiphenomenon or therapeutic target? Curr Opin Rheumatol 2016; 28: 537–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oxenkrug GF . Tryptophan kynurenine metabolism as a common mediator of genetic and environmental impacts in major depressive disorder: the serotonin hypothesis revisited 40 years later. Isr J Psychiatry Relat Sci 2010; 47: 56–63.

    PubMed  PubMed Central  Google Scholar 

  22. Cribbs AP, Kennedy A, Penn H, Read JE, Amjadi P, Green P et al. Treg cell function in rheumatoid arthritis is compromised by ctla-4 promoter methylation resulting in a failure to activate the indoleamine 2,3-dioxygenase pathway. Arthritis Rheumatol 2014; 66: 2344–2354.

    Article  CAS  PubMed  Google Scholar 

  23. Sridharan GV, Choi K, Klemashevich C, Wu C, Prabakaran D, Pan LB et al. Prediction and quantification of bioactive microbiota metabolites in the mouse gut. Nat Commun 2014; 5: 5492.

    Article  CAS  PubMed  Google Scholar 

  24. Hubbard TD, Murray IA, Perdew GH . Indole and tryptophan metabolism: endogenous and dietary routes to Ah receptor activation. Drug Metab Dispos 2015; 43: 1522–1535.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Esser C, Rannug A, Stockinger B . The aryl hydrocarbon receptor in immunity. Trends Immunol 2009; 30: 447–454.

    Article  CAS  PubMed  Google Scholar 

  26. Lahoti TS, John K, Hughes JM, Kusnadi A, Murray IA, Krishnegowda G et al. Aryl hydrocarbon receptor antagonism mitigates cytokine-mediated inflammatory signalling in primary human fibroblast-like synoviocytes. Ann Rheum Dis 2013; 72: 1708–1716.

    Article  CAS  PubMed  Google Scholar 

  27. Mohinta S, Kannan AK, Gowda K, Amin SG, Perdew GH, August A . Differential regulation of Th17 and T regulatory cell differentiation by aryl hydrocarbon receptor dependent xenobiotic response element dependent and independent pathways. Toxicol Sci 2015; 145: 233–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang TH, Hsu PY, Meng M, Su CC . Supplement of 5-hydroxytryptophan before induction suppresses inflammation and collagen-induced arthritis. Arthritis Res Ther 2015; 17: 364.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hubbard TD, Murray IA, Bisson WH, Lahoti TS, Gowda K, Amin SG et al. Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles. Sci Rep 2015; 5: 12689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hatton RD, Weaver CT . Duality in the Th17-Treg developmental decision. F1000 Biol Rep 2009; 1: 5.

    PubMed  PubMed Central  Google Scholar 

  31. Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 2004; 31: 390–392.

    PubMed  Google Scholar 

  32. Cary SG, Blair EB . New transport medium for shipment of clinical specimens. I. Fecal specimens. J Bacteriol 1964; 88: 96–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wilson L, Arabshahi A, Simons B, Prasain JK, Barnes S . Improved high sensitivity analysis of polyphenols and their metabolites by nano-liquid chromatography-mass spectrometry. Arch Biochem Biophys 2014; 559: 3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li S, Park Y, Duraisingham S, Strobel FH, Khan N, Soltow QA et al. Predicting network activity from high throughput metabolomics. PLoS Comput Biol 2013; 9: e1003123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li S, Pozhitkov A, Ryan RA, Manning CS, Brown-Peterson N, Brouwer M . Constructing a fish metabolic network model. Genome Biol 2010; 11: R115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010; 7: 335–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Edgar RC . Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010; 26: 2460–2461.

    Article  CAS  PubMed  Google Scholar 

  38. Lozupone C, Knight R . UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 2005; 71: 8228–8235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (Grant numbers P60 AR064172, P30AR050948, P30AI027767, UL1TR000165, S10 RR027822) and the American College of Rheumatology, Rheumatology Research Foundation. The following are acknowledged for their support of the Microbiome Resource at the University of Alabama at Birmingham: the School of Medicine, the Comprehensive Cancer Center (P30CA13148), the Center for AIDS Research (5P30AI027767), the Center for Clinical Translational Science (UL1TR000165) and the Heflin Center. We acknowledge Drs Peter Eipers and Anna Genin for their assistance with the preparation of the stool specimens and Landon Wilson for his assistance with metabolomics analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M L Stoll.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoll, M., Kumar, R., Lefkowitz, E. et al. Fecal metabolomics in pediatric spondyloarthritis implicate decreased metabolic diversity and altered tryptophan metabolism as pathogenic factors. Genes Immun 17, 400–405 (2016). https://doi.org/10.1038/gene.2016.38

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2016.38

This article is cited by

Search

Quick links