Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic variations in GPSM3 associated with protection from rheumatoid arthritis affect its transcript abundance

Abstract

G protein signaling modulator 3 (GPSM3) is a regulator of G protein-coupled receptor signaling, with expression restricted to leukocytes and lymphoid organs. Previous genome-wide association studies have highlighted single-nucleotide polymorphisms (SNPs; rs204989 and rs204991) in a region upstream of the GPSM3 transcription start site as being inversely correlated to the prevalence of rheumatoid arthritis (RA)—this association is supported by the protection afforded to Gpsm3-deficient mice in models of inflammatory arthritis. Here, we assessed the functional consequences of these polymorphisms. We collected biospecimens from 50 volunteers with RA diagnoses, 50 RA-free volunteers matched to the aforementioned group and 100 unmatched healthy young volunteers. We genotyped these individuals for GPSM3 (rs204989, rs204991), CCL21 (rs2812378) and HLA gene region (rs6457620) polymorphisms, and found no significant differences in minor allele frequencies between the RA and disease-free cohorts. However, we identified that individuals homozygous for SNPs rs204989 and rs204991 had decreased GPSM3 transcript abundance relative to individuals homozygous for the major allele. In vitro promoter activity studies suggest that SNP rs204989 is the primary cause of this decrease in transcript levels. Knockdown of GPSM3 in THP-1 cells, a human monocytic cell line, was found to disrupt ex vivo migration to the chemokine MCP-1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. White GE, Iqbal AJ, Greaves DR . CC chemokine receptors and chronic inflammation— therapeutic opportunities and pharmacological challenges. Pharmacol Rev 2013; 65: 47–89.

    Article  CAS  Google Scholar 

  2. Griffith JW, Sokol CL, Luster AD . Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 2014; 32: 659–702.

    Article  CAS  Google Scholar 

  3. Kehrl JH . Chemoattractant receptor signaling and the control of lymphocyte migration. Immunol Res 2006; 34: 211–227.

    Article  CAS  Google Scholar 

  4. Cho H, Kehrl JH . Regulation of immune function by G protein-coupled receptors, trimeric G proteins, and RGS proteins. Prog Mol Biol Transl Sci 2009; 86: 249–298.

    Article  CAS  Google Scholar 

  5. Weninger W, Biro M, Jain R . Leukocyte migration in the interstitial space of non- lymphoid organs. Nat Rev Immunol 2014; 14: 232–246.

    Article  CAS  Google Scholar 

  6. Willard FS, Kimple RJ, Siderovski DP . Return of the GDI: the GoLoco motif in cell division. Annu Rev Biochem 2004; 73: 925–951.

    Article  CAS  Google Scholar 

  7. Lambert NA, Johnston CA, Cappell SD, Kuravi S, Kimple AJ, Willard FS et al. Regulators of G-protein signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity. Proc Natl Acad Sci USA 2010; 107: 7066–7071.

    Article  CAS  Google Scholar 

  8. Takesono A, Cismowski MJ, Bernard M, Chung P, Hazard S, Duzic E et al. Receptor- independent activators of heterotrimeric G-protein signaling pathways. J Biol Chem 1999; 274: 33202–33205.

    Article  CAS  Google Scholar 

  9. Siderovski DP, Diverse-Pierluissi MA, De Vries L . The GoLoco motif: a Gα-i/o binding motif and potential guanine-nucleotide exchange factor. Trends Biochem Sci 1999; 24: 340–341.

    Article  CAS  Google Scholar 

  10. Kimple RJ, Kimple ME, Betts L, Sondek J, Siderovski DP . Structural determinants for GoLoco-induced inhibition of nucleotide release by Galpha subunits. Nature 2002; 416: 878–881.

    Article  CAS  Google Scholar 

  11. Surve CR, Lehmann D, Smrcka AV . A chemical biology approach demonstrates G protein βγ subunits are sufficient to mediate directional neutrophil chemotaxis. J Biol Chem 2014; 289: 17791–17801.

    Article  CAS  Google Scholar 

  12. Lehmann DM, AMPB Seneviratne, Smrcka AV, York N . Small molecule disruption of G protein βγ subunit signaling inhibits neutrophil chemotaxis and inflammation. Mol Pharmacol 2008; 73: 410–418.

    Article  CAS  Google Scholar 

  13. Kinoshita-Kawada M, Oberdick J, Xi Zhu M . A Purkinje cell specific GoLoco domain protein, L7/Pcp-2, modulates receptor-mediated inhibition of Cav2.1 Ca2+ channels in a dose-dependent manner. Mol Brain Res 2004; 132: 73–86.

    Article  CAS  Google Scholar 

  14. Dennis EA, Bradshaw RA . Signal transduction by G proteins: basic principles, molecular diversity, and structural basis of their actions. In: Transduction Mechanisms in Cellular Signaling. Academic Press: Waltham, MA, 2011, pp 499–466.

    Google Scholar 

  15. Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 2009; 10: R130.

    Article  Google Scholar 

  16. Giguère P, Billard M, Laroche G, Buckley B, Timoshchenko R, McGinnis M et al. G- protein signaling modulator-3, a gene linked to autoimmune diseases, regulates monocyte function and its deficiency protects from inflammatory arthritis. Mol Immunol 2013; 54: 193–198.

    Article  Google Scholar 

  17. Billard MJ, Gall BJ, Richards KL, Siderovski DP, Tarrant TK . G protein signaling modulator-3: a leukocyte regulator of inflammation in health and disease. Am J Clin Exp Immunol 2014; 3: 97–106.

    PubMed  PubMed Central  Google Scholar 

  18. Sirota M, Schaub Ma, Batzoglou S, Robinson WH, Butte AJ . Autoimmune disease classification by inverse association with SNP alleles. PLoS Genet 2009; 5: e1000792.

    Article  Google Scholar 

  19. Corona E, Dudley JT, Butte AJ . Extreme evolutionary disparities seen in positive selection across seven complex diseases. PLoS One 2010; 5: e12236.

    Article  Google Scholar 

  20. Plenge RM, Seielstad M, Padyukov L, Lee T, Remmers EF, Ding B et al. TRAF1-C5 as a risk locus for rheumatoid arthritis — a genomewide study. N Engl J Med 2007; 357: 1199–1209.

    Article  CAS  Google Scholar 

  21. Gregersen PK, Silver J, Winchester RJ . The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 1987; 30: 1205–1213.

    Article  CAS  Google Scholar 

  22. Holoshitz J . The rheumatoid arthritis HLA-DRB1 shared epitope. Curr Opin Rheumatol 2010; 22: 293–298.

    Article  CAS  Google Scholar 

  23. Wellcome T, Case T, Consortium C. Genomewide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls Supplementary Information. Nature 2007; 447: 661–678.

    Article  Google Scholar 

  24. Raychaudhuri S, Remmers EF, Lee AT, Hackett R, Burtt NP, Gianniny L et al. Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat Genet 2008; 40: 1216–1223.

    Article  CAS  Google Scholar 

  25. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001; 29: 308–311.

    Article  CAS  Google Scholar 

  26. Hobl E, Mader R, Erlacher L, Duhm B, Mustak M, Broll H et al. The influence of methotrexate on the gene expression of the pro-inflammatory cytokine IL-12 A in the therapy of rheumatoid arthritis. Clin Exp Rheumatol 2011; 29: 963–969.

    PubMed  Google Scholar 

  27. Goldminz AM, SuĂ¡rez-Fariñas M, Wang AC, Dumont N, Krueger JG, Gottlieb AB . CCL20 and IL22 Messenger RNA Expression After Adalimumab vs Methotrexate Treatment of Psoriasis: A Randomized Clinical Trial. JAMA Dermatol 2015; 151: 837–846.

    Article  Google Scholar 

  28. The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 2012; 491: 56–65.

    Article  Google Scholar 

  29. Mathelier A, Zhao X, Zhang AW, Parcy F, Worsley-Hunt R, Arenillas DJ et al. JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res 2014; 42: D142–D147.

    Article  CAS  Google Scholar 

  30. Giguère PM, Laroche G, Oestreich Ea, Siderovski DP . G-protein signaling modulator-3 regulates heterotrimeric G-protein dynamics through dual association with Gβ and Gαi protein subunits. J Biol Chem 2012; 287: 4863–4874.

    Article  Google Scholar 

  31. Ward LD, Kellis M . Interpreting noncoding genetic variation in complex traits and human disease. Nat Biotechnol 2012; 30: 1095–1106.

    Article  CAS  Google Scholar 

  32. Kochi Y, Suzuki A, Yamamoto K . Genetic basis of rheumatoid arthritis: a current review. Biochem Biophys Res Commun 2014; 452: 254–262.

    Article  CAS  Google Scholar 

  33. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 2012; 22: 1790–1797.

    Article  CAS  Google Scholar 

  34. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447: 661–678.

    Article  Google Scholar 

  35. Han T-U, Bang S-Y, Kang C, Bae S-C . TRAF1 polymorphisms associated with rheumatoid arthritis susceptibility in Asians and in Caucasians. Arthritis Rheum 2009; 60: 2577–2584.

    Article  CAS  Google Scholar 

  36. Dausset J, Cann H, Cohen D, Lathrop M, Lalouel JM, White R . Centre d’etude du polymorphisme humain (CEPH): collaborative genetic mapping of the human genome. Genomics 1990; 6: 575–577.

    Article  CAS  Google Scholar 

  37. Brisbin RA, Dilger RJ, Hammock AS, Plein C . West Virginia Politics and Government 2nd edn. University of Nebraska Press: Lincoln, NE, 2009.

    Book  Google Scholar 

  38. Tarrant TK, Patel DD . Chemokines and leukocyte trafficking in rheumatoid arthritis. Pathophysiology 2006; 13: 1–14.

    Article  CAS  Google Scholar 

  39. BrĂ¼hl H, Cihak J, Schneider Ma, PlachĂ½ J, Rupp T, Wenzel I et al. Dual role of CCR2 during initiation and progression of collagen-induced arthritis: evidence for regulatory activity of CCR2+ T cells. J Immunol 2004; 172: 890–898.

    Article  Google Scholar 

  40. Pavkova Goldbergova M, Lipkova J, Pavek N, Gatterova J, Vasku A, Soucek M et al. RANTES, MCP-1 chemokines and factors describing rheumatoid arthritis. Mol Immunol 2012; 52: 273–278.

    Article  CAS  Google Scholar 

  41. Hrdlickova B, Kumar V, Kanduri K, Zhernakova DV, Tripathi S, Karjalainen J et al. Expression profiles of long non-coding RNAs located in autoimmune disease-associated regions reveal immune cell type specificity. Genome Med 2014; 6: 88–101.

    Article  Google Scholar 

  42. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  43. Kingston RE, Chen CA, Rose JK . Calcium phosphate transfection. In: Current Protocols in Molecular Biology. John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001, pp 10.13.1–10.13.9.

    Google Scholar 

  44. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307: 1098–1101.

    Article  CAS  Google Scholar 

  45. O’Doherty U, Swiggard WJ, Malim MH . Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J Virol 2000; 74: 10074–10080.

    Article  Google Scholar 

  46. Kingston RE, Chen CA, Rose JK . Transfection of DNA. In: Bonifacino JS, Harford JB, Lippincott-Schwartz J, Yamada KM (eds). Current Protocols in Cell Biology. John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003, pp 10.13.1–10.13.9.

    Google Scholar 

  47. FREEMAN GH, HALTON JH . Note on an exact treatment of contingency, goodness of fit and other problems of significance. Biometrika 1951; 38: 141–149.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health under Award Number U54GM104942. BJG and DPS thank Dr Teresa Tarrant (UNC-Chapel Hill TARC) for helpful discussions on this topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D P Siderovski.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gall, B., Wilson, A., Schroer, A. et al. Genetic variations in GPSM3 associated with protection from rheumatoid arthritis affect its transcript abundance. Genes Immun 17, 139–147 (2016). https://doi.org/10.1038/gene.2016.3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2016.3

This article is cited by

Search

Quick links