Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Common and specific signatures of gene expression and protein–protein interactions in autoimmune diseases

Abstract

The aim of this study is to understand intracellular regulatory mechanisms in peripheral blood mononuclear cells (PBMCs), which are either common to many autoimmune diseases or specific to some of them. We incorporated large-scale data such as protein–protein interactions, gene expression and demographical information of hundreds of patients and healthy subjects, related to six autoimmune diseases with available large-scale gene expression measurements: multiple sclerosis (MS), systemic lupus erythematosus (SLE), juvenile rheumatoid arthritis (JRA), Crohn’s disease (CD), ulcerative colitis (UC) and type 1 diabetes (T1D). These data were analyzed concurrently by statistical and systems biology approaches tailored for this purpose. We found that chemokines such as CXCL1 -3, 5, 6 and the interleukin (IL) IL8 tend to be differentially expressed in PBMCs of patients with the analyzed autoimmune diseases. In addition, the anti-apoptotic gene BCL3, interferon-γ (IFNG), and the vitamin D receptor (VDR) gene physically interact with significantly many genes that tend to be differentially expressed in PBMCs of patients with the analyzed autoimmune diseases. In general, similar cellular processes tend to be differentially expressed in PBMC in the analyzed autoimmune diseases. Specifically, the cellular processes related to cell proliferation (for example, epidermal growth factor, platelet-derived growth factor, nuclear factor-κB, Wnt/β-catenin signaling, stress-activated protein kinase c-Jun NH2-terminal kinase), inflammatory response (for example, interleukins IL2 and IL6, the cytokine granulocyte–macrophage colony-stimulating factor and the B-cell receptor), general signaling cascades (for example, mitogen-activated protein kinase, extracellular signal-regulated kinase, p38 and TRK) and apoptosis are activated in most of the analyzed autoimmune diseases. However, our results suggest that in each of the analyzed diseases, apoptosis and chemotaxis are activated via different subsignaling pathways. Analyses of the expression levels of dozens of genes and the protein–protein interactions among them demonstrated that CD and UC have relatively similar gene expression signatures, whereas the gene expression signatures of T1D and JRA relatively differ from the signatures of the other autoimmune diseases. These diseases are the only ones activated via the Fcɛ pathway. The relevant genes and pathways reported in this study are discussed at length, and may be helpful in the diagnoses and understanding of autoimmunity and/or specific autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Noel R, Rose IRM . The Aautoimmune Diseases. Academic Press New York, 2006.

    Google Scholar 

  2. Karopka T, Fluck J, Mevissen HT, Glass A . The autoimmune disease database: a dynamically compiled literature-derived database. BMC Bioinform 2006; 7: 325.

    Google Scholar 

  3. Jacobson DL, Gange SJ, Rose NR, Graham NM . Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol 1997; 84: 223–243.

    CAS  PubMed  Google Scholar 

  4. Marrack P, Kappler J, Kotzin BL . Autoimmune disease: why and where it occurs. Nat Med 2001; 7: 899–905.

    CAS  PubMed  Google Scholar 

  5. Salaman MR . A two-step hypothesis for the appearance of autoimmune disease. Autoimmunity 2003; 36: 57–61.

    CAS  PubMed  Google Scholar 

  6. Eisenbarth GS . Type 1 Diabetes: Molecular, Cellular and Clinical Immunology. Springer Berlin, 2004.

    Google Scholar 

  7. Lahita RG . Lupus: Systemic Erythematosus. Academic Press New York, 2003.

    Google Scholar 

  8. Prantera C, Korelitz BI . Crohn’s disease. Informa Health Care 1996; 8: 198–199.

    Google Scholar 

  9. Ó’Moráin CA . Ulcerative colitis. CRC Press Boca Raton, FL, 1991.

    Google Scholar 

  10. Earl J, Brewer EHG, Donald A . Person: Juvenile Rheumatoid Arthritis. Saunders Boston, MA, 1982.

    Google Scholar 

  11. Waxman SG . Demyelinating diseases—new pathological insights, new therapeutic targets. N Engl J Med 1998; 338: 323–325.

    CAS  PubMed  Google Scholar 

  12. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG . Multiple sclerosis. N Engl J Med 2000; 343: 938–952.

    CAS  PubMed  Google Scholar 

  13. Compston A, Coles A . Multiple sclerosis. Lancet 2002; 359: 1221–1231.

    PubMed  Google Scholar 

  14. Nistala K, Wedderburn LR . Th17 and regulatory T cells: rebalancing pro- and anti-inflammatory forces in autoimmune arthritis. Rheumatology (Oxford) 2009; 48: 602–606.

    CAS  Google Scholar 

  15. Tsokos GC . Systemic lupus erythematosus. N Engl J Med 2011; 365: 2110–2121.

    CAS  PubMed  Google Scholar 

  16. Crispin JC, Liossis SN, Kis-Toth K, Lieberman LA, Kyttaris VC, Juang YT et al. Pathogenesis of human systemic lupus erythematosus: recent advances. Trends Mol Med 2010; 16: 47–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chan OT, Hannum LG, Haberman AM, Madaio MP, Shlomchik MJ . A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med 1999; 189: 1639–1648.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. MacDonald TT, Murch SH . Aetiology and pathogenesis of chronic inflammatory bowel disease. Baillieres Clin Gastroenterol 1994; 8: 1–34.

    CAS  PubMed  Google Scholar 

  19. Lehuen A, Diana J, Zaccone P, Cooke A . Immune cell crosstalk in type 1 diabetes. Nat Rev Immunol 2010; 10: 501–513.

    CAS  PubMed  Google Scholar 

  20. Centola M, Frank MB, Bolstad AI, Alex P, Szanto A, Zeher M et al. Genome-scale assessment of molecular pathology in systemic autoimmune diseases using microarray technology: a potential breakthrough diagnostic and individualized therapy-design tool. Scand J Immunol 2006; 64: 236–242.

    CAS  PubMed  Google Scholar 

  21. Achiron A, Gurevich M, Friedman N, Kaminski N, Mandel M . Blood transcriptional signatures of multiple sclerosis: unique gene expression of disease activity. Ann Neurol 2004; 55: 410–417.

    CAS  PubMed  Google Scholar 

  22. Achiron A, Gurevich M, Snir Y, Segal E, Mandel M . Zinc-ion binding and cytokine activity regulation pathways predicts outcome in relapsing-remitting multiple sclerosis. Clin Exp Immunol 2007; 149: 235–242.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Baranzini SE, Mousavi P, Rio J, Caillier SJ, Stillman A, Villoslada P et al. Transcription-based prediction of response to IFNbeta using supervised computational methods. PLoS Biol 2005; 3: e2.

    PubMed  Google Scholar 

  24. Gurevich M, Tuller T, Rubinstein U, Or-Bach R, Achiron A . Prediction of acute multiple sclerosis relapses by transcription levels of peripheral blood cells. BMC Med Genom 2009; 2: 46.

    Google Scholar 

  25. Bomprezzi R, Ringner M, Kim S, Bittner ML, Khan J, Chen Y et al. Gene expression profile in multiple sclerosis patients and healthy controls: identifying pathways relevant to disease. Hum Mol Genet 2003; 12: 2191–2199.

    CAS  PubMed  Google Scholar 

  26. Whitney AR, Diehn M, Popper SJ, Alizadeh AA, Boldrick JC, Relman DA et al. Individuality and variation in gene expression patterns in human blood. Proc Natl Acad Sci USA 2003; 100: 1896–1901.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Barnes MG, Aronow BJ, Luyrink LK, Moroldo MB, Pavlidis P, Passo MH et al. Gene expression in juvenile arthritis and spondyloarthropathy: pro-angiogenic ELR+ chemokine genes relate to course of arthritis. Rheumatology (Oxford) 2004; 43: 973–979.

    CAS  Google Scholar 

  28. Mandel M, Gurevich M, Pauzner R, Kaminski N, Achiron A . Autoimmunity gene expression portrait: specific signature that intersects or differentiates between multiple sclerosis and systemic lupus erythematosus. Clin Exp Immunol 2004; 138: 164–170.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaizer EC, Glaser CL, Chaussabel D, Banchereau J, Pascual V, White PC . Gene expression in peripheral blood mononuclear cells from children with diabetes. J Clin Endocrinol Metab 2007; 92: 3705–3711.

    CAS  PubMed  Google Scholar 

  30. Chaussabel D, Pascual V, Banchereau J . Assessing the human immune system through blood transcriptomics. BMC Biol 2010; 8: 84.

    PubMed  PubMed Central  Google Scholar 

  31. Compston A, Ebers G, Lassmann H, McDonald I, Matthews B, Wekerle H . McAlpine’s Multiple Sclerosis 1998.

  32. Jarvis JN, Dozmorov I, Jiang K, Frank MB, Szodoray P, Alex P et al. Novel approaches to gene expression analysis of active polyarticular juvenile rheumatoid arthritis. Arthritis Res Ther 2004; 6: R15–R32.

    CAS  PubMed  Google Scholar 

  33. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA 2003; 100: 2610–2615.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Aune TM, Maas K, Parker J, Moore JH, Olsen NJ . Profiles of gene expression in human autoimmune disease. Cell Biochem Biophys 2004; 40: 81–96.

    CAS  PubMed  Google Scholar 

  35. Burczynski ME, Peterson RL, Twine NC, Zuberek KA, Brodeur BJ, Casciotti L et al. Molecular classification of Crohn’s disease and ulcerative colitis patients using transcriptional profiles in peripheral blood mononuclear cells. J Mol Diagn 2006; 8: 51–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bovin LF, Brynskov J, Hegedus L, Jess T, Nielsen CH, Bendtzen K . Gene expression profiling in autoimmune diseases: chronic inflammation or disease specific patterns? Autoimmunity 2007; 40: 191–201.

    CAS  PubMed  Google Scholar 

  37. Scherer A . Batch Effects and Noise in Microarray Experiments: Sources and Solutions. Wiley New York, 2009.

    Google Scholar 

  38. Tuller T, Atar S, Ruppin E, Gurevich M, Achiron A . Global map of physical interactions among differentially expressed genes in multiple sclerosis relapses and remissions. Hum Mol Genet 2011; 20: 3606–3619.

    CAS  PubMed  Google Scholar 

  39. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P . Molecular Biology of the Cell. New York, 2002.

    Google Scholar 

  40. Chuang HY, Lee E, Liu YT, Lee D, Ideker T . Network-based classification of breast cancer metastasis. Mol Syst Biol 2007; 3: 140.

    PubMed  PubMed Central  Google Scholar 

  41. Rutherford A . Introducing to ANOVA and ANCOVA a GLM Approach. SAGE Publication Inc Thousand Oaks, CA, 2001.

    Google Scholar 

  42. Fernandez EJ, Lolis E . Structure, function, and inhibition of chemokines. Annu Rev Pharmacol Toxicol 2002; 42: 469–499.

    CAS  PubMed  Google Scholar 

  43. Rottman JB . Key role of chemokines and chemokine receptors in inflammation, immunity, neoplasia, and infectious disease. Vet Pathol 1999; 36: 357–367.

    CAS  PubMed  Google Scholar 

  44. Ramagopalan SV, Heger A, Berlanga AJ, Maugeri NJ, Lincoln MR, Burrell A et al. A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res 2010; 20: 1352–1360.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wulczyn FG, Naumann M, Scheidereit C . Candidate proto-oncogene bcl-3 encodes a subunit-specific inhibitor of transcription factor NF-kappa B. Nature 1992; 358: 597–599.

    CAS  PubMed  Google Scholar 

  46. Gilmore TD . Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 2006; 25: 6680–6684.

    CAS  PubMed  Google Scholar 

  47. Eggleton P, Harries LW, Alberigo G, Wordsworth P, Viner N, Haigh R et al. Changes in apoptotic gene expression in lymphocytes from rheumatoid arthritis and systemic lupus erythematosus patients compared with healthy lymphocytes. J Clin Immunol 2010; 30: 649–658.

    CAS  PubMed  Google Scholar 

  48. Achiron A, Feldman A, Mandel M, Gurevich M . Impaired expression of peripheral blood apoptotic-related gene transcripts in acute multiple sclerosis relapse. Ann N Y Acad Sci 2007; 1107: 155–167.

    CAS  PubMed  Google Scholar 

  49. Nathan C . Points of control in inflammation. Nature 2002; 420: 846–852.

    CAS  PubMed  Google Scholar 

  50. Chaussabel D, Quinn C, Shen J, Patel P, Glaser C, Baldwin N et al. A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. Immunity 2008; 29: 150–164.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Arasappan D, Tong W, Mummaneni P, Fang H, Amur S . Meta-analysis of microarray data using a pathway-based approach identifies a 37-gene expression signature for systemic lupus erythematosus in human peripheral blood mononuclear cells. BMC Med 2011; 9: 65.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bossis G, Malnou CE, Farras R, Andermarcher E, Hipskind R, Rodriguez M et al. Down-regulation of c-Fos/c-Jun AP-1 dimer activity by sumoylation. Mol Cell Biol 2005; 25: 6964–6979.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Camargo JF, Correa PA, Castiblanco J, Anaya JM . Interleukin-1beta polymorphisms in Colombian patients with autoimmune rheumatic diseases. Genes Immun 2004; 5: 609–614.

    CAS  PubMed  Google Scholar 

  54. Aradhya S, Nelson DL . NF-kappaB signaling and human disease. Curr Opin Genet Dev 2001; 11: 300–306.

    CAS  PubMed  Google Scholar 

  55. Pena AS, Penate M . Genetic susceptibility and regulation of inflammation in Crohn’s disease. Relationship with the innate immune system. Rev Esp Enferm Dig 2002; 94: 351–360.

    CAS  PubMed  Google Scholar 

  56. Yamamoto Y, Gaynor RB . Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest 2001; 107: 135–142.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gabay C . Interleukin-6 and chronic inflammation. Arthritis Res Ther 2006; 8 (Suppl 2): S3.

    PubMed  PubMed Central  Google Scholar 

  58. Kristiansen OP, Mandrup-Poulsen T . Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes 2005; 54 (Suppl 2): S114–S124.

    CAS  PubMed  Google Scholar 

  59. Tackey E, Lipsky PE, Illei GG . Rationale for interleukin-6 blockade in systemic lupus erythematosus. Lupus 2004; 13: 339–343.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Nishimoto N . Interleukin-6 in rheumatoid arthritis. Curr Opin Rheumatol 2006; 18: 277–281.

    CAS  PubMed  Google Scholar 

  61. Woods JM, Katschke KJ, Volin MV, Ruth JH, Woodruff DC, Amin MA et al. IL-4 adenoviral gene therapy reduces inflammation, proinflammatory cytokines, vascularization, and bony destruction in rat adjuvant-induced arthritis. J Immunol 2001; 166: 1214–1222.

    CAS  PubMed  Google Scholar 

  62. Wurster AL, Rodgers VL, White MF, Rothstein TL, Grusby MJ . Interleukin-4-mediated protection of primary B cells from apoptosis through Stat6-dependent up-regulation of Bcl-xL. J Biol Chem 2002; 277: 27169–27175.

    CAS  PubMed  Google Scholar 

  63. Or R, Renz H, Terada N, Gelfand EW . IL-4 and IL-2 promote human T-cell proliferation through symmetrical but independent pathways. Clin Immunol Immunopathol 1992; 64: 210–217.

    CAS  PubMed  Google Scholar 

  64. Besser M, Wank R . Cutting edge: clonally restricted production of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3 mRNA by human immune cells and Th1/Th2-polarized expression of their receptors. J Immunol 1999; 162: 6303–6306.

    CAS  PubMed  Google Scholar 

  65. Mandel M, Achiron A, Tuller T, Barliya T, Rechavi G, Amariglio N et al. Clone clusters in autoreactive CD4 T-cell lines from probable multiple sclerosis patients form disease-characteristic signatures. Immunology 2009; 128: 287–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang N, Hartig H, Dzhagalov I, Draper D, He YW . The role of apoptosis in the development and function of T lymphocytes. Cell Res 2005; 15: 749–769.

    CAS  PubMed  Google Scholar 

  67. Eguchi K . Apoptosis in autoimmune diseases. Intern Med 2001; 40: 275–284.

    CAS  PubMed  Google Scholar 

  68. Baranzini SE . The genetics of autoimmune diseases: a networked perspective. Curr Opin Immunol 2009; 21: 596–605.

    CAS  PubMed  Google Scholar 

  69. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann Neurol 2001; 50: 121–127.

    CAS  PubMed  Google Scholar 

  70. Best WR, Becktel JM, Singleton JW, Kern F . Development of a Crohn’s disease activity index. National Cooperative Crohn’s Disease Study. Gastroenterology 1976; 70: 439–444.

    CAS  PubMed  Google Scholar 

  71. Schroeder KW, Tremaine WJ, Ilstrup DM . Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. A randomized study. N Engl J Med 1987; 317: 1625–1629.

    CAS  PubMed  Google Scholar 

  72. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO et al. Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis 2010; 69: 1580–1588.

    PubMed  Google Scholar 

  73. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature 2005; 437: 1173–1178.

    CAS  PubMed  Google Scholar 

  74. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005; 122: 957–968.

    CAS  PubMed  Google Scholar 

  75. Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK, Surendranath V et al. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 2003; 13: 2363–2371.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Xenarios I, Salwinski L, Duan XJ, Higney P, Kim SM, Eisenberg D . DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 2002; 30: 303–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Tuller T, Kupiec M, Ruppin E . Determinants of protein abundance and translation efficiency in S. cerevisiae. PLoS Comput Biol 2007; 3: e248.

    PubMed  PubMed Central  Google Scholar 

  78. Vogel C, Abreu Rde S, Ko D, Le SY, Shapiro BA, Burns SC et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol 2010; 6: 400.

    PubMed  PubMed Central  Google Scholar 

  79. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 2003; 4: P3.

    PubMed  Google Scholar 

  80. Storey JD . A direct approach to false discovery rates. J R Statist Soc 2002; 64: 479–498.

    Google Scholar 

  81. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc 1995; 57: 289–300.

    Google Scholar 

  82. Shao J, Tu D . The Jackknife and Bootstrap. Springer Berlin, 1995.

    Google Scholar 

  83. Pedhazur EJ . Multiple Regression in Behavioral Research. Wadsworth Publishing Toronto, ON, Canada, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Tuller.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuller, T., Atar, S., Ruppin, E. et al. Common and specific signatures of gene expression and protein–protein interactions in autoimmune diseases. Genes Immun 14, 67–82 (2013). https://doi.org/10.1038/gene.2012.55

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2012.55

Keywords

This article is cited by

Search

Quick links