Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Appetite responses to high-fat meals or diets of varying fatty acid composition: a comprehensive review

Abstract

Dietary fatty acids (FA) act as signaling molecules with diverse effects on physiologic function. The aim of this article is to review and summarize the clinical human studies in the literature on how dietary FA composition in meals and diets affects hunger and satiety signaling in the body. Studies examining FA saturation (monounsaturated (MUFA), saturated or polyunsaturated (PUFA) FAs) or FA chain length from high-fat meals/diets were included. Measures of appetite included visual analog scale (VAS) questionnaires, appetite hormones (Cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), peptide YY (PYY), gastric insulinotropic polypeptide gastric inhibitory peptide (GIP), ghrelin, leptin, insulin) and/or energy intake (EI) data. VAS measures in 9 out of 13 studies were not influenced by FA saturation. PUFAs, followed by MUFAs, tended to induce the greatest stimulatory effect on GLP-1, GIP and PYY, which was found in 6 out of 11 studies measuring appetite-related hormones. Regarding FA chain length, five of six studies show either no difference or less hunger (VAS) and greater satiety hormone levels (two of six studies) for FAs with longer chain lengths. EI does not seem to be affected by the saturation of FAs while EI was inconclusive for studies comparing FA chain length. Possibly due to the inconsistencies in study design, little agreement is observed between the studies on the impact of FA composition on hormonal and subjective measures of appetite as well as EI. Therefore, more research on the long-term impact of dietary FA composition on appetite control may provide clearer outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Ogden CL, Carroll MD, Kit BK, Flegal KM . Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA 2014; 311: 806–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. French SA, Story M, Jeffery RW . Environmental influences on eating and physical activity. Annu Rev Public Health 2001; 22: 309–335.

    Article  CAS  PubMed  Google Scholar 

  3. Poppitt SD, McCormack D, Buffenstein R . Short-term effects of macronutrient preloads on appetite and energy intake in lean women. Physiol Behav 1998; 64: 279–285.

    Article  CAS  PubMed  Google Scholar 

  4. Halton TL, Hu FB . The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am Coll Nutr 2004; 23: 373–385.

    Article  PubMed  Google Scholar 

  5. Bray GA, Paeratakul S, Popkin BM . Dietary fat and obesity: a review of animal, clinical and epidemiological studies. Physiol Behav 2004; 83: 549–555.

    Article  CAS  PubMed  Google Scholar 

  6. Serra D, Mera P, Malandrino MI, Mir JF, Herrero L . Mitochondrial fatty acid oxidation in obesity. Antioxid Redox Signal 2013; 19: 269–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wood IS, de Heredia FP, Wang B, Trayhurn P . Cellular hypoxia and adipose tissue dysfunction in obesity. Proc Nutr Soc 2009; 68: 370–377.

    Article  CAS  PubMed  Google Scholar 

  8. Due A, Larsen TM, Hermansen K, Stender S, Holst JJ, Toubro S et al. Comparison of the effects on insulin resistance and glucose tolerance of 6-mo high-monounsaturated-fat, low-fat, and control diets. Am J Clin Nutr 2008; 87: 855–862.

    Article  CAS  PubMed  Google Scholar 

  9. De Wit N, Derrien M, Bosch-Vermeulen H, Oosterink E, Keshtkar S, Duval C et al. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am J Physiol 2012; 303: G589–G599.

    Article  CAS  Google Scholar 

  10. Bjermo H, Iggman D, Kullberg J, Dahlman I, Johansson L, Persson L et al. Effects of n− 6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am J Clin Nutr 2012; 95: 1003–1012.

    Article  CAS  PubMed  Google Scholar 

  11. Jones PJ, Ridgen JE, Phang PT, Birmingham CL . Influence of dietary fat polyunsaturated to saturated ratio on energy substrate utilization in obesity. Metabolism 1992; 41: 396–401.

    Article  CAS  PubMed  Google Scholar 

  12. Jones PJ, Schoeller DA . Polyunsaturated: saturated ratio of diet fat influences energy substrate utilization in the human. Metabolism 1988; 37: 145–151.

    Article  CAS  PubMed  Google Scholar 

  13. van Marken Lichtenbelt W, Mensink R, Westerterp K . The effect of fat composition of the diet on energy metabolism. Z Ernahrun 1997; 36: 303–305.

    Article  CAS  Google Scholar 

  14. Hill JO, Wyatt HR, Peters JC . Energy balance and obesity. Circulation 2012; 126: 126–132.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Badman MK, Flier JS . The gut and energy balance: visceral allies in the obesity wars. Science 2005; 307: 1909–1914.

    Article  CAS  PubMed  Google Scholar 

  16. Cooper JA, Polonsky KS, Schoeller DA . Serum leptin levels in obese males during over‐and underfeeding. Obesity 2009; 17: 2149–2154.

    Article  CAS  PubMed  Google Scholar 

  17. Farooqi IS, O'Rahilly S . Monogenic obesity in humans. Annu Rev Med 2005; 56: 443–458.

    Article  CAS  PubMed  Google Scholar 

  18. Murphy KG, Bloom SR . Gut hormones and the regulation of energy homeostasis. Nature 2006; 444: 854–859.

    Article  CAS  PubMed  Google Scholar 

  19. Wabitsch M, Funcke J-B, Lennerz B, Kuhnle-Krahl U, Lahr G, Debatin K-M et al. Biologically inactive leptin and early-onset extreme obesity. N Engl J Med 2015; 372: 48–54.

    Article  PubMed  CAS  Google Scholar 

  20. Farooqi I . Monogenic human obesity. Obes Metab 2008; 36: 1–11.

    CAS  Google Scholar 

  21. Krude H, Grüters A . Implications of proopiomelanocortin (POMC) mutations in humans: the POMC deficiency syndrome. Trends Endocrin Metab 2000; 11: 15–22.

    Article  CAS  Google Scholar 

  22. Krude H, Biebermann H, Schnabel D, Tansek MZ, Theunissen P, Mullis PE et al. Obesity due to proopiomelanocortin deficiency: three new cases and treatment trials with thyroid hormone and ACTH4–10. J Clin Endocrinol Metab 2003; 88: 4633–4640.

    Article  CAS  PubMed  Google Scholar 

  23. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997; 387: 903–907.

    Article  CAS  PubMed  Google Scholar 

  24. Popkin BM, Duffey KJ . Does hunger and satiety drive eating anymore? Increasing eating occasions and decreasing time between eating occasions in the United States. Am J Clin Nutr 2010; 91: 1342–1347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wansink B . Mindless Eating: Why We Eat More Than We Think. Bantam, 2007.

    Book  Google Scholar 

  26. Wansink B . What really determines what we eat. The hidden truth. Diabetes Self Manag 2006; 23: 7.

    Google Scholar 

  27. Wren A, Bloom S . Gut hormones and appetite control. Gastroenterology 2007; 132: 2116–2130.

    Article  CAS  PubMed  Google Scholar 

  28. Marić G, Gazibara T, Zaletel I, Labudović Borović M, Tomanović N, Ćirić M et al. The role of gut hormones in appetite regulation (review). Acta Physiol Hung 2014; 101: 395–407.

    Article  PubMed  CAS  Google Scholar 

  29. Suzuki K, Simpson KA, Minnion JS, Shillito JC, Bloom SR . The role of gut hormones and the hypothalamus in appetite regulation. Endocr J 2010; 57: 359–372.

    Article  CAS  PubMed  Google Scholar 

  30. King MW. Integrative Medical Biochemistry: Examination and Board Review. 2014, 912pp..

  31. Schwartz MW, Baskin DG, Kaiyala KJ, Woods SC . Model for the regulation of energy balance and adiposity by the central nervous system. Am J Clin Nutr 1999; 69: 584–596.

    Article  CAS  PubMed  Google Scholar 

  32. Sucajtys-Szulc E, Turyn J, Goyke E, Korczynska J, Stelmanska E, Slominska E et al. Differential effect of prolonged food restriction and fasting on hypothalamic malonyl-CoA concentration and expression of orexigenic and anorexigenic neuropeptides genes in rats. Neuropeptides 2010; 44: 17–23.

    Article  CAS  PubMed  Google Scholar 

  33. Kurrasch DM, Cheung CC, Lee FY, Tran PV, Hata K, Ingraham HA . The neonatal ventromedial hypothalamus transcriptome reveals novel markers with spatially distinct patterning. J Neurosci 2007; 27: 13624–13634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Appleyard SM, Bailey TW, Doyle MW, Jin Y-H, Smart JL, Low MJ et al. Proopiomelanocortin neurons in nucleus tractus solitarius are activated by visceral afferents: regulation by cholecystokinin and opioids. J Neurosci 2005; 25: 3578–3585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mars M, Stafleu A, de Graaf C . Use of satiety peptides in assessing the satiating capacity of foods. Physiol Behav 2012; 105: 483–488.

    Article  CAS  PubMed  Google Scholar 

  36. Stengel A, Taché Y . Regulation of food intake: the gastric X/A-like endocrine cell in the spotlight. Curr Gastroenterol Rep 2009; 11: 448–454.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Asakawa A, Inui A, Kaga O, Yuzuriha H, Nagata T, Ueno N et al. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 2001; 120: 337–345.

    Article  CAS  PubMed  Google Scholar 

  38. Riediger T, Traebert M, Schmid HA, Scheel C, Lutz TA, Scharrer E . Site-specific effects of ghrelin on the neuronal activity in the hypothalamic arcuate nucleus. Neurosci Lett 2003; 341: 151–155.

    Article  CAS  PubMed  Google Scholar 

  39. Moran TH, Kinzig KP . Gastrointestinal satiety signals II. Cholecystokinin. Am J Physiol Gastrointest Liver Physiol 2004; 286: G183–G188.

    Article  CAS  PubMed  Google Scholar 

  40. Wank SA I . CCK receptors: an exemplary family. Am J Physiol 1998; 274: G607–G613.

    CAS  PubMed  Google Scholar 

  41. Moran TH, Bi S . Hyperphagia and obesity in OLETF rats lacking CCK-1 receptors. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1211–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bi S, Ladenheim EE, Schwartz GJ, Moran TH . A role for NPY overexpression in the dorsomedial hypothalamus in hyperphagia and obesity of OLETF rats. Am J Physiol Regul Integr Comp Physiol 2001; 281: R254–R260.

    Article  CAS  PubMed  Google Scholar 

  43. Bi S, Moran TH . Actions of CCK in the controls of food intake and body weight: lessons from the CCK-A receptor deficient OLETF rat. Neuropeptides 2002; 36: 171–181.

    Article  CAS  PubMed  Google Scholar 

  44. Jang H-J, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim B-J, Zhou J et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci USA 2007; 104: 15069–15074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stanley S, Wynne K, Bloom S . Gastrointestinal satiety signals III. Glucagon-like peptide 1, oxyntomodulin, peptide YY, and pancreatic polypeptide. Am J Physiol Gastrointest Liver Physiol 2004; 286: G693–G697.

    Article  CAS  PubMed  Google Scholar 

  46. Ekblad E, Sundler F . Distribution of pancreatic polypeptide and peptide YY. Peptides 2002; 23: 251–261.

    Article  CAS  PubMed  Google Scholar 

  47. Cooper JA . Factors affecting circulating levels of peptide YY in humans: a comprehensive review. Nutr Res Rev 2014; 27: 186–197.

    Article  CAS  PubMed  Google Scholar 

  48. Seino Y, Fukushima M, Yabe D . GIP and GLP‐1, the two incretin hormones: similarities and differences. J Diabetes Investig 2010; 1: 8–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cowley MA, Smart JL, Rubinstein M, Cerdán MG, Diano S, Horvath TL et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 2001; 411: 480–484.

    Article  CAS  PubMed  Google Scholar 

  50. Jang M, Mistry A, Swick AG, Romsos DR . Leptin rapidly inhibits hypothalamic neuropeptide Y secretion and stimulates corticotropin-releasing hormone secretion in adrenalectomized mice. J Nutr 2000; 130: 2813–2820.

    Article  CAS  PubMed  Google Scholar 

  51. Berthoud H-R . A new role for leptin as a direct satiety signal from the stomach. Am J Physiol Regul Integr Comp Physiol 2005; 288: R796–R797.

    Article  CAS  PubMed  Google Scholar 

  52. Stubbs RJ, Hughes DA, Johnstone AM, Rowley E, Reid C, Elia M et al. The use of visual analogue scales to assess motivation to eat in human subjects: a review of their reliability and validity with an evaluation of new hand-held computerized systems for temporal tracking of appetite ratings. Br J Nutr 2000; 84: 405–415.

    Article  CAS  PubMed  Google Scholar 

  53. Ahearn EP . The use of visual analog scales in mood disorders: a critical review. J Psychiatr Res 1997; 31: 569–579.

    Article  CAS  PubMed  Google Scholar 

  54. Poppitt S, Leahy F, Keogh G, Wang Y, Mulvey T, Stojkovic M et al. Effect of high-fat meals and fatty acid saturation on postprandial levels of the hormones ghrelin and leptin in healthy men. Eur J Clin Nutr 2006; 60: 77–84.

    Article  CAS  PubMed  Google Scholar 

  55. Alfenas RC, Mattes RD . Effect of fat sources on satiety. Obes Res 2003; 11: 183–187.

    Article  PubMed  Google Scholar 

  56. Flint A, Helt B, Raben A, Toubro S, Astrup A . Effects of different dietary fat types on postprandial appetite and energy expenditure. Obes Res 2003; 11: 1449–1455.

    Article  CAS  PubMed  Google Scholar 

  57. Strik CM, Lithander FE, McGill A-T, MacGibbon AK, McArdle BH, Poppitt SD . No evidence of differential effects of SFA, MUFA or PUFA on post-ingestive satiety and energy intake: a randomised trial of fatty acid saturation. Nutr J 2010; 9: 1.

    Article  CAS  Google Scholar 

  58. Casas-Agustench P, López-Uriarte P, Bulló M, Ros E, Gómez-Flores A, Salas-Salvadó J . Acute effects of three high-fat meals with different fat saturations on energy expenditure, substrate oxidation and satiety. Clin Nutr 2009; 28: 39–45.

    Article  CAS  PubMed  Google Scholar 

  59. MacIntosh CG, Holt SH, Brand-Miller JC . The degree of fat saturation does not alter glycemic, insulinemic or satiety responses to a starchy staple in healthy men. J Nutr 2003; 133: 2577–2580.

    Article  CAS  PubMed  Google Scholar 

  60. Könner AC, Brüning JC . Selective insulin and leptin resistance in metabolic disorders. Cell Metab 2012; 16: 144–152.

    Article  PubMed  CAS  Google Scholar 

  61. Aitken RC . Measurement of feelings using visual analogue scales. Proc R Soc Med 1969; 62: 989.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Miller MD, Ferris DG . Measurement of subjective phenomena in primary care research: the Visual Analogue Scale. Fam Pract Res J 1993; 13: 15–24.

    CAS  PubMed  Google Scholar 

  63. Maljaars J, Romeyn EA, Haddeman E, Peters HP, Masclee AA . Effect of fat saturation on satiety, hormone release, and food intake. Am J Clin Nutr 2009; 89: 1019–1024.

    Article  CAS  PubMed  Google Scholar 

  64. Lawton CL, Delargy HJ, Brockman J, Smith FC, Blundell JE . The degree of saturation of fatty acids influences post-ingestive satiety. Br J Nutr 2000; 83: 473–482.

    CAS  PubMed  Google Scholar 

  65. Kozimor A, Chang H, Cooper JA . Effects of dietary fatty acid composition from a high fat meal on satiety. Appetite 2013; 69: 39–45.

    Article  PubMed  Google Scholar 

  66. Stevenson JL, Clevenger HC, Cooper JA . Hunger and satiety responses to high‐fat meals of varying fatty acid composition in women with obesity. Obesity 2015; 23: 1980–1986.

    Article  CAS  PubMed  Google Scholar 

  67. Thomsen C, Rasmussen O, Lousen T, Holst JJ, Fenselau S, Schrezenmeir J et al. Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects. Am J Clin Nutr 1999; 69: 1135–1143.

    Article  CAS  PubMed  Google Scholar 

  68. Feltrin KL, Little TJ, Meyer JH, Horowitz M, Rades T, Wishart J et al. Comparative effects of intraduodenal infusions of lauric and oleic acids on antropyloroduodenal motility, plasma cholecystokinin and peptide YY, appetite, and energy intake in healthy men. Am J Clin Nutr 2008; 87: 1181–1187.

    Article  CAS  PubMed  Google Scholar 

  69. Robertson MD, Jackson KG, Fielding BA, Morgan LM, Williams CM, Frayn KN . Acute ingestion of a meal rich in n−3 polyunsaturated fatty acids results in rapid gastric emptying in humans. Am J Clin Nutr 2002; 76: 232–238.

    Article  CAS  PubMed  Google Scholar 

  70. Beysen C, Karpe F, Fielding B, Clark A, Levy J, Frayn K . Interaction between specific fatty acids, GLP-1 and insulin secretion in humans. Diabetologia 2002; 45: 1533–1541.

    Article  CAS  PubMed  Google Scholar 

  71. Duca F, Lam T . Gut microbiota, nutrient sensing and energy balance. Diab Obes Metab 2014; 16: 68–76.

    Article  Google Scholar 

  72. Hellström PM, Grybäck P, Jacobsson H . The physiology of gastric emptying. Best Pract Res Cl Anaesth 2006; 20: 397–407.

    Article  CAS  Google Scholar 

  73. Kamphuis M, Westerterp-PlantengaI M, Saris W . Fat-specific satiety in humans for fat high in linoleic acid vs fat high in oleic acid. Eur J Clin Nutr 2001; 55: 499–508.

    Article  CAS  PubMed  Google Scholar 

  74. Lithander FE, Keogh GF, Wang Y, Cooper GJ, Mulvey TB, Chan YK et al. No evidence of an effect of alterations in dietary fatty acids on fasting adiponectin over 3 weeks. Obesity 2008; 16: 592–599.

    Article  CAS  PubMed  Google Scholar 

  75. Cooper J, Watras A, Paton C, Wegner F, Adams A, Schoeller D . Impact of exercise and dietary fatty acid composition from a high-fat diet on markers of hunger and satiety. Appetite 2011; 56: 171–178.

    Article  CAS  PubMed  Google Scholar 

  76. Houchins JA, Tan S-Y, Campbell WW, Mattes RD . Effects of fruit and vegetable, consumed in solid vs beverage forms, on acute and chronic appetitive responses in lean and obese adults. Int J Obes 2013; 37: 1109–1115.

    Article  CAS  Google Scholar 

  77. Rolls BJ . The relationship between dietary energy density and energy intake. Physiol Behav 2009; 97: 609–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stubbs R, Johnstone A, O’Reilly L, Barton K, Reid C . The effect of covertly manipulating the energy density of mixed diets on ad libitum food intake in'pseudo free-living'humans. Int J Obes 1998; 22: 980–987.

    Article  CAS  Google Scholar 

  79. Friedman MI . Fuel partitioning and food intake. Am J Clin Nutr 1998; 67: 513S–518SS.

    Article  CAS  PubMed  Google Scholar 

  80. Adams SH, Lei C, Jodka CM, Nikoulina SE, Hoyt JA, Gedulin B et al. PYY [3-36] administration decreases the respiratory quotient and reduces adiposity in diet-induced obese mice. J Nutr 2006; 136: 195–201.

    Article  CAS  PubMed  Google Scholar 

  81. Stensel D . Exercise, appetite and appetite-regulating hormones: implications for food intake and weight control. Ann Nutr Metab 2011; 57 (Suppl 2), 36–42.

    Google Scholar 

  82. Broom DR, Batterham RL, King JA, Stensel DJ . Influence of resistance and aerobic exercise on hunger, circulating levels of acylated ghrelin, and peptide YY in healthy males. Am J Physiol Regul Integr Comp Physiol 2009; 296: R29–R35.

    Article  CAS  PubMed  Google Scholar 

  83. Broom DR, Stensel DJ, Bishop NC, Burns SF, Miyashita M . Exercise-induced suppression of acylated ghrelin in humans. J Appl Physiol 2007; 102: 2165–2171.

    Article  CAS  PubMed  Google Scholar 

  84. Martins C, Morgan LM, Bloom SR, Robertson MD . Effects of exercise on gut peptides, energy intake and appetite. J Endocrinol 2007; 193: 251–258.

    Article  CAS  PubMed  Google Scholar 

  85. Ueda S-y, Yoshikawa T, Katsura Y, Usui T, Fujimoto S . Comparable effects of moderate intensity exercise on changes in anorectic gut hormone levels and energy intake to high intensity exercise. J Endocrinol 2009; 203: 357–364.

    Article  CAS  PubMed  Google Scholar 

  86. Ueda S-y, Yoshikawa T, Katsura Y, Usui T, Nakao H, Fujimoto S . Changes in gut hormone levels and negative energy balance during aerobic exercise in obese young males. J Endocrinol 2009; 201: 151–159.

    Article  CAS  PubMed  Google Scholar 

  87. Van Wymelbeke V, Himaya A, Louis-Sylvestre J, Fantino M . Influence of medium-chain and long-chain triacylglycerols on the control of food intake in men. Am J Clin Nutr 1998; 68: 226–234.

    Article  CAS  PubMed  Google Scholar 

  88. Rolls BJ, Gnizak N, Summerfelt A, Laster LJ . Food intake in dieters and nondieters after a liquid meal containing medium-chain triglycerides. Am J Clin Nutr 1988; 48: 66–71.

    Article  CAS  PubMed  Google Scholar 

  89. Poppitt S, Strik C, MacGibbon A, McArdle B, Budgett S, McGill A-T . Fatty acid chain length, postprandial satiety and food intake in lean men. Physiol Behav 2010; 101: 161–167.

    Article  CAS  PubMed  Google Scholar 

  90. Feltrin KL, Little TJ, Meyer JH, Horowitz M, Smout AJ, Wishart J et al. Effects of intraduodenal fatty acids on appetite, antropyloroduodenal motility, and plasma CCK and GLP-1 in humans vary with their chain length. Am J Physiol Regul Integr Comp Physiol 2004; 287: R524–R533.

    Article  CAS  PubMed  Google Scholar 

  91. Matzinger D, Degen L, Drewe J, Meuli J, Duebendorfer R, Ruckstuhl N et al. The role of long chain fatty acids in regulating food intake and cholecystokinin release in humans. Gut 2000; 46: 689–694.

    Article  Google Scholar 

  92. Stubbs R, Harbron C . Covert manipulation of the ratio of medium-to long-chain triglycerides in isoenergetically dense diets: effect on food intake in ad libitum feeding men. Int J Obes Relat Metab Disord 1996; 20: 435–444.

    CAS  PubMed  Google Scholar 

  93. Wilkinson LL, Hinton EC, Fay SH, Ferriday D, Rogers PJ, Brunstrom JM . Computer-based assessments of expected satiety predict behavioural measures of portion-size selection and food intake. Appetite 2012; 59: 933–938.

    Article  PubMed  Google Scholar 

  94. Fontana JM, Farooq M, Sazonov E . Automatic ingestion monitor: a novel wearable device for monitoring of ingestive behavior. IEEE Trans Biomed Eng 2014; 61: 1772–1779.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Author contributions

SK and JCA are solely responsible for formulating the research questions, selecting and reviewing the relevant literature, and preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A Cooper.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaviani, S., Cooper, J. Appetite responses to high-fat meals or diets of varying fatty acid composition: a comprehensive review. Eur J Clin Nutr 71, 1154–1165 (2017). https://doi.org/10.1038/ejcn.2016.250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2016.250

This article is cited by

Search

Quick links