Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Prognostic and therapeutic implications of minimal residual disease at the time of transplantation in acute leukemia

Abstract

Relapse remains the major cause of treatment failure after hematopoietic cell transplantation (HCT) in acute leukemia, even in patients transplanted in morphologic CR. Various techniques now enable the sensitive quantification of ‘minimal’ amounts of residual disease (MRD) in patients with acute leukemia in remission. Numerous studies convincingly demonstrate that MRD at the time of transplantation is a powerful, independent predictor of subsequent relapse, with current detection levels of one leukemic cell in 105–106 normal cells being prognostically relevant. This recognition provides the rationale to assign patients with detectable MRD (that is, ‘MRD+’ patients) to intensified therapies before, during, or after transplantation, although data supporting these strategies are still sparse. Limited evidence from observational studies suggests that outcomes with autologous HCT are so poor that MRD+ patients should preferentially be assigned to allogeneic HCT, which can cure a subgroup of these patients, particularly if unmanipulated (T-cell replete) grafts and/or minimized immunosuppression are used to optimize the graft-vs-leukemia effect. Emerging data suggest that additional therapy with non-cross-resistant agents to decrease residual tumor burden before transplantation in MRD+ patients might be beneficial. Further, other studies hint at immunotherapy (for example, rapid withdrawal of immunosuppression and/or donor lymphocyte infusions) as a means to prevent overt relapse if patients remain, or become, MRD+ after HCT. Ultimately, controlled clinical studies are needed to define the value of MRD-directed therapies, and patients should be encouraged to enter such trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Estey E, Döhner H . Acute myeloid leukaemia. Lancet 2006; 368: 1894–1907.

    Article  PubMed  Google Scholar 

  2. Pui CH, Robison LL, Look AT . Acute lymphoblastic leukaemia. Lancet 2008; 371: 1030–1043.

    Article  CAS  PubMed  Google Scholar 

  3. Ryan DH, van Dongen JJM . Detection of residual disease in acute leukemia using immunological markers. In: Bennett JM, Foon KA, (eds).. Immunologic Approaches to the Classification and Management of Lymphomas and Leukemias, 1988/01/01 edn, vol. 38 Kluwer Academic Publishers: Boston, MA, 1988 pp 173–207.

    Chapter  Google Scholar 

  4. Hagenbeek A . Minimal residual disease in leukemia: state of the art 1991. Leukemia 1992; 6 (Suppl 2): 12–16.

    PubMed  Google Scholar 

  5. Sievers EL, Loken MR . Detection of minimal residual disease in acute myelogenous leukemia. J Pediatr Hematol Oncol 1995; 17: 123–133.

    Article  CAS  PubMed  Google Scholar 

  6. Szczepański T, Orfão A, van der Velden VHJ, San Miguel JF, van Dongen JJM . Minimal residual disease in leukaemia patients. Lancet Oncol 2001; 2: 409–417.

    Article  PubMed  Google Scholar 

  7. Campana D . Determination of minimal residual disease in leukaemia patients. Br J Haematol 2003; 121: 823–838.

    Article  PubMed  Google Scholar 

  8. Kern W, Haferlach C, Haferlach T, Schnittger S . Monitoring of minimal residual disease in acute myeloid leukemia. Cancer 2008; 112: 4–16.

    Article  CAS  PubMed  Google Scholar 

  9. Campana D . Role of minimal residual disease monitoring in adult and pediatric acute lymphoblastic leukemia. Hematol Oncol Clin North Am 2009; 23: 1083–1098 vii.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Campana D . Progress of minimal residual disease studies in childhood acute leukemia. Curr Hematol Malig Rep 2010; 5: 169–176.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hokland P, Ommen HB . Towards individualized follow-up in adult acute myeloid leukemia in remission. Blood 2011; 117: 2577–2584.

    Article  CAS  PubMed  Google Scholar 

  12. Brüggemann M, Gökbuget N, Kneba M . Acute lymphoblastic leukemia: monitoring minimal residual disease as a therapeutic principle. Semin Oncol 2012; 39: 47–57.

    Article  PubMed  CAS  Google Scholar 

  13. Buccisano F, Maurillo L, Del Principe MI, Del Poeta G, Sconocchia G, Lo-Coco F et al. Prognostic and therapeutic implications of minimal residual disease detection in acute myeloid leukemia. Blood 2012; 119: 332–341.

    Article  CAS  PubMed  Google Scholar 

  14. Campana D . Minimal residual disease monitoring in childhood acute lymphoblastic leukemia. Curr Opin Hematol 2012; 19: 313–318.

    Article  CAS  PubMed  Google Scholar 

  15. Campana D, Pui CH . Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance. Blood 1995; 85: 1416–1434.

    Article  CAS  PubMed  Google Scholar 

  16. Kröger N, Bacher U, Bader P, Böttcher S, Borowitz MJ, Dreger P et al. NCI First international workshop on the biology, prevention, and treatment of relapse after allogeneic hematopoietic stem cell transplantation: report from the committee on disease-specific methods and strategies for monitoring relapse following allogeneic stem cell transplantation. Part I: methods, acute leukemias, and myelodysplastic syndromes. Biol Blood Marrow Transplant 2010; 16: 1187–1211.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kröger N, Miyamura K, Bishop MR . Minimal residual disease following allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2011; 17 (1 Suppl): S94–S100.

    Article  PubMed  Google Scholar 

  18. Goulden N, Oakhill A, Steward C . Practical application of minimal residual disease assessment in childhood acute lymphoblastic leukaemia annotation. Br J Haematol 2001; 112: 275–281.

    Article  CAS  PubMed  Google Scholar 

  19. Dominietto A . Minimal residual disease markers before and after allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia. Curr Opin Hematol 2011; 18: 381–387.

    Article  CAS  PubMed  Google Scholar 

  20. Fang M, Storer B, Wood B, Gyurkocza B, Sandmaier BM, Appelbaum FR . Prognostic impact of discordant results from cytogenetics and flow cytometry in patients with acute myeloid leukemia undergoing hematopoietic cell transplantation. Cancer 2012; 118: 2411–2419.

    Article  PubMed  Google Scholar 

  21. Nies BA, Bodey GP, Thomas LB, Brecher G, Freireich EJ . The persistence of extramedullary leukemic infiltrates during bone marrow remission of acute leukemia. Blood 1965; 26: 133–141.

    Article  CAS  PubMed  Google Scholar 

  22. Mathé G, Schwarzenberg L, Mery AM, Cattan A, Schneider M, Amiel JL et al. Extensive histological and cytological survey of patients with acute leukaemia in ‘complete remission’. Br Med J 1966; 1: 640–642.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Clift RA, Buckner CD, Thomas ED, Kopecky KJ, Appelbaum FR, Tallman M et al. The treatment of acute non-lymphoblastic leukemia by allogeneic marrow transplantation. Bone Marrow Transplant 1987; 2: 243–258.

    CAS  PubMed  Google Scholar 

  24. Sierra J, Storer B, Hansen JA, Bjerke JW, Martin PJ, Petersdorf EW et al. Transplantation of marrow cells from unrelated donors for treatment of high-risk acute leukemia: the effect of leukemic burden, donor HLA-matching, and marrow cell dose. Blood 1997; 89: 4226–4235.

    Article  CAS  PubMed  Google Scholar 

  25. Horowitz MM, Rowlings PA . An update from the International Bone Marrow Transplant Registry and the Autologous Blood and Marrow Transplant Registry on current activity in hematopoietic stem cell transplantation. Curr Opin Hematol 1997; 4: 395–400.

    Article  CAS  PubMed  Google Scholar 

  26. Doney K, Gooley TA, Deeg HJ, Flowers ME, Storb R, Appelbaum FR . Allogeneic hematopoietic cell transplantation with full-intensity conditioning for adult acute lymphoblastic leukemia: results from a single center, 1998-2006. Biol Blood Marrow Transplant 2011; 17: 1187–1195.

    Article  PubMed  Google Scholar 

  27. Uckun FM, Kersey JH, Haake R, Weisdorf D, Nesbit ME, Ramsay NK . Pretransplantation burden of leukemic progenitor cells as a predictor of relapse after bone marrow transplantation for acute lymphoblastic leukemia. N Engl J Med 1993; 329: 1296–1301.

    Article  CAS  PubMed  Google Scholar 

  28. Mizuta S, Ito Y, Kohno A, Kiyoi H, Miyamura K, Tanimoto M et al. Accurate quantitation of residual tumor burden at bone marrow harvest predicts timing of subsequent relapse in patients with common ALL treated by autologous bone marrow transplantation. Nagoya BMT Group. Bone Marrow Transplant 1999; 24: 777–784.

    Article  CAS  PubMed  Google Scholar 

  29. Knechtli CJC, Goulden NJ, Hancock JP, Grandage VLG, Harris EL, Garland RJ et al. Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia. Blood 1998; 92: 4072–4079.

    Article  CAS  PubMed  Google Scholar 

  30. van der Velden VHJ, Joosten SA, Willemse MJ, van Wering ER, Lankester AW, van Dongen JJM et al. Real-time quantitative PCR for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia. Leukemia 2001; 15: 1485–1487.

    Article  CAS  PubMed  Google Scholar 

  31. Uzunel M, Mattsson J, Jaksch M, Remberger M, Ringdén O . The significance of graft-versus-host disease and pretransplantation minimal residual disease status to outcome after allogeneic stem cell transplantation in patients with acute lymphoblastic leukemia. Blood 2001; 98: 1982–1984.

    Article  CAS  PubMed  Google Scholar 

  32. Mortuza FY, Papaioannou M, Moreira IM, Coyle LA, Gameiro P, Gandini D et al. Minimal residual disease tests provide an independent predictor of clinical outcome in adult acute lymphoblastic leukemia. J Clin Oncol 2002; 20: 1094–1104.

    Article  PubMed  Google Scholar 

  33. Dombret H, Gabert J, Boiron JM, Rigal-Huguet F, Blaise D, Thomas X et al. Outcome of treatment in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia--results of the prospective multicenter LALA-94 trial. Blood 2002; 100: 2357–2366.

    Article  CAS  PubMed  Google Scholar 

  34. Miglino M, Berisso G, Grasso R, Canepa L, Clavio M, Pierri I et al. Allogeneic bone marrow transplantation (BMT) for adults with acute lymphoblastic leukemia (ALL): predictive role of minimal residual disease monitoring on relapse. Bone Marrow Transplant 2002; 30: 579–585.

    Article  CAS  PubMed  Google Scholar 

  35. Sánchez J, Serrano J, Gómez P, Martínez F, Martîn C, Madero L et al. Clinical value of immunological monitoring of minimal residual disease in acute lymphoblastic leukaemia after allogeneic transplantation. Br J Haematol 2002; 116: 686–694.

    Article  PubMed  Google Scholar 

  36. Bader P, Hancock J, Kreyenberg H, Goulden NJ, Niethammer D, Oakhill A et al. Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post-transplant outcome in children with ALL. Leukemia 2002; 16: 1668–1672.

    Article  CAS  PubMed  Google Scholar 

  37. Krejci O, van der Velden VHJ, Bader P, Kreyenberg H, Goulden N, Hancock J et al. Level of minimal residual disease prior to haematopoietic stem cell transplantation predicts prognosis in paediatric patients with acute lymphoblastic leukaemia: a report of the Pre-BMT MRD Study Group. Bone Marrow Transplant 2003; 32: 849–851.

    Article  CAS  PubMed  Google Scholar 

  38. Stirewalt DL, Guthrie KA, Beppu L, Bryant EM, Doney K, Gooley T et al. Predictors of relapse and overall survival in Philadelphia chromosome-positive acute lymphoblastic leukemia after transplantation. Biol Blood Marrow Transplant 2003; 9: 206–212.

    Article  PubMed  Google Scholar 

  39. Sramkova L, Muzikova K, Fronkova E, Krejci O, Sedlacek P, Formankova R et al. Detectable minimal residual disease before allogeneic hematopoietic stem cell transplantation predicts extremely poor prognosis in children with acute lymphoblastic leukemia. Pediatr Blood Cancer 2007; 48: 93–100.

    Article  PubMed  Google Scholar 

  40. Spinelli O, Peruta B, Tosi M, Guerini V, Salvi A, Zanotti MC et al. Clearance of minimal residual disease after allogeneic stem cell transplantation and the prediction of the clinical outcome of adult patients with high-risk acute lymphoblastic leukemia. Haematologica 2007; 92: 612–618.

    Article  PubMed  Google Scholar 

  41. Paganin M, Zecca M, Fabbri G, Polato K, Biondi A, Rizzari C et al. Minimal residual disease is an important predictive factor of outcome in children with relapsed 'high-risk' acute lymphoblastic leukemia. Leukemia 2008; 22: 2193–2200.

    Article  CAS  PubMed  Google Scholar 

  42. Bader P, Kreyenberg H, Henze GH, Eckert C, Reising M, Willasch A et al. Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: the ALL-REZ BFM Study Group. J Clin Oncol 2009; 27: 377–384.

    Article  PubMed  Google Scholar 

  43. Elorza I, Palacio C, Dapena JL, Gallur L, Sánchez de Toledo J, Díaz de Heredia C . Relationship between minimal residual disease measured by multiparametric flow cytometry prior to allogeneic hematopoietic stem cell transplantation and outcome in children with acute lymphoblastic leukemia. Haematologica 2010; 95: 936–941.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Giebel S, Stella-Holowiecka B, Krawczyk-Kulis M, Gokbuget N, Hoelzer D, Doubek M et al. Status of minimal residual disease determines outcome of autologous hematopoietic SCT in adult ALL. Bone Marrow Transplant 2010; 45: 1095–1101.

    Article  CAS  PubMed  Google Scholar 

  45. Patel B, Rai L, Buck G, Richards SM, Mortuza Y, Mitchell W et al. Minimal residual disease is a significant predictor of treatment failure in non T-lineage adult acute lymphoblastic leukaemia: final results of the international trial UKALL XII/ECOG2993. Br J Haematol 2010; 148: 80–89.

    Article  CAS  PubMed  Google Scholar 

  46. Leung W, Campana D, Yang J, Pei D, Coustan-Smith E, Gan K et al. High success rate of hematopoietic cell transplantation regardless of donor source in children with very high-risk leukemia. Blood 2011; 118: 223–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Leung W, Pui CH, Coustan-Smith E, Yang J, Pei D, Gan K et al. Detectable minimal residual disease before hematopoietic cell transplantation is prognostic but does not preclude cure for children with very-high-risk leukemia. Blood 2012 (e-pub ahead of print, 19 April 2012; doi:10.1182/blood-2012-02-409813).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ruggeri A, Michel G, Dalle J-H, Caniglia M, Locatelli F, Campos A et al. Impact of pretransplant minimal residual disease after cord blood transplantation for childhood acute lymphoblastic leukemia in remission: an Eurocord, PDWP–EBMT analysis. Leukemia 2012; 26: 2455–2461.

    Article  CAS  PubMed  Google Scholar 

  49. Bachanova V, Burke MJ, Yohe S, Cao Q, Sandhu K, Singleton TP et al. Unrelated cord blood transplantation in adult and pediatric acute lymphoblastic leukemia: effect of minimal residual disease on relapse and survival. Biol Blood Marrow Transplant 2012; 18: 963–968.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Meloni G, Diverio D, Vignetti M, Avvisati G, Capria S, Petti MC et al. Autologous bone marrow transplantation for acute promyelocytic leukemia in second remission: prognostic relevance of pretransplant minimal residual disease assessment by reverse-transcription polymerase chain reaction of the PML/RAR alpha fusion gene. Blood 1997; 90: 1321–1325.

    Article  CAS  PubMed  Google Scholar 

  51. Ottaviani E, Martinelli G, Testoni N, Visani G, Tani M, Tura S . Role of autologous bone marrow transplantation as consolidation therapy in acute promyelocytic leukemia patients in complete remission. Haematologica 1998; 83: 1051–1055.

    CAS  PubMed  Google Scholar 

  52. Reichle A, Rothe G, Krause S, Zaiss M, Ullrich H, Schmitz G et al. Transplant characteristics: minimal residual disease and impaired megakaryocytic colony growth as sensitive parameters for predicting relapse in acute myeloid leukemia. Leukemia 1999; 13: 1227–1234.

    Article  CAS  PubMed  Google Scholar 

  53. Venditti A, Buccisano F, Del Poeta G, Maurillo L, Tamburini A, Cox C et al. Level of minimal residual disease after consolidation therapy predicts outcome in acute myeloid leukemia. Blood 2000; 96: 3948–3952.

    Article  CAS  PubMed  Google Scholar 

  54. Venditti A, Maurillo L, Buccisano F, Del Poeta G, Mazzone C, Tamburini A et al. Pretransplant minimal residual disease level predicts clinical outcome in patients with acute myeloid leukemia receiving high-dose chemotherapy and autologous stem cell transplantation. Leukemia 2003; 17: 2178–2182.

    Article  CAS  PubMed  Google Scholar 

  55. Kebriaei P, Kline J, Stock W, Kasza K, Le Beau MM, Larson RA et al. Impact of disease burden at time of allogeneic stem cell transplantation in adults with acute myeloid leukemia and myelodysplastic syndromes. Bone Marrow Transplant 2005; 35: 965–970.

    Article  CAS  PubMed  Google Scholar 

  56. Osborne D, Frost L, Tobal K, Liu Yin JA . Elevated levels of WT1 transcripts in bone marrow harvests are associated with a high relapse risk in patients autografted for acute myeloid leukaemia. Bone Marrow Transplant 2005; 36: 67–70.

    Article  CAS  PubMed  Google Scholar 

  57. Buccisano F, Maurillo L, Gattei V, Del Poeta G . Del Principe MI, Cox MC et al. The kinetics of reduction of minimal residual disease impacts on duration of response and survival of patients with acute myeloid leukemia. Leukemia 2006; 20: 1783–1789.

    Article  CAS  PubMed  Google Scholar 

  58. Laane E, Derolf AR, Björklund E, Mazur J, Everaus H, Söderhäll S et al. The effect of allogeneic stem cell transplantation on outcome in younger acute myeloid leukemia patients with minimal residual disease detected by flow cytometry at the end of post-remission chemotherapy. Haematologica 2006; 91: 833–836.

    PubMed  Google Scholar 

  59. Maurillo L, Buccisano F, Del Principe MI, Del Poeta G, Spagnoli A, Panetta P et al. Toward optimization of postremission therapy for residual disease-positive patients with acute myeloid leukemia. J Clin Oncol 2008; 26: 4944–4951.

    Article  PubMed  Google Scholar 

  60. Jacobsohn DA, Tse WT, Chaleff S, Rademaker A, Duerst R, Olszewski M et al. High WT1 gene expression before haematopoietic stem cell transplant in children with acute myeloid leukaemia predicts poor event-free survival. Br J Haematol 2009; 146: 669–674.

    Article  CAS  PubMed  Google Scholar 

  61. Walter RB, Gooley TA, Wood BL, Milano F, Fang M, Sorror ML et al. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. J Clin Oncol 2011; 29: 1190–1197.

    Article  PubMed  PubMed Central  Google Scholar 

  62. San Miguel JF, Martinez A, Macedo A, Vidriales MB, Lopez-Berges C, Gonzalez M et al. Immunophenotyping investigation of minimal residual disease is a useful approach for predicting relapse in acute myeloid leukemia patients. Blood 1997; 90: 2465–2470.

    Article  CAS  PubMed  Google Scholar 

  63. Knechtli CJC, Goulden NJ, Hancock JP, Harris EL, Garland RJ, Jones CG et al. Minimal residual disease status as a predictor of relapse after allogeneic bone marrow transplantation for children with acute lymphoblastic leukaemia. Br J Haematol 1998; 102: 860–871.

    Article  CAS  PubMed  Google Scholar 

  64. Gyurkocza B, Storb R, Storer BE, Chauncey TR, Lange T, Shizuru JA et al. Nonmyeloablative allogeneic hematopoietic cell transplantation in patients with acute myeloid leukemia. J Clin Oncol 2010; 28: 2859–2867.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ram R, Storb R, Sandmaier BM, Maloney DG, Woolfrey A, Flowers ME et al. Non-myeloablative conditioning with allogeneic hematopoietic cell transplantation for the treatment of high-risk acute lymphoblastic leukemia. Haematologica 2011; 96: 1113–1120.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gehly GB, Bryant EM, Lee AM, Kidd PG, Thomas ED . Chimeric BCR-abl messenger RNA as a marker for minimal residual disease in patients transplanted for Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 1991; 78: 458–465.

    Article  CAS  PubMed  Google Scholar 

  67. Miyamura K, Tanimoto M, Morishima Y, Horibe K, Yamamoto K, Akatsuka M et al. Detection of Philadelphia chromosome-positive acute lymphoblastic leukemia by polymerase chain reaction: possible eradication of minimal residual disease by marrow transplantation. Blood 1992; 79: 1366–1370.

    Article  CAS  PubMed  Google Scholar 

  68. Radich J, Gehly G, Lee A, Avery R, Bryant E, Edmands S et al. Detection of bcr-abl transcripts in Philadelphia chromosome-positive acute lymphoblastic leukemia after marrow transplantation. Blood 1997; 89: 2602–2609.

    Article  CAS  PubMed  Google Scholar 

  69. Bader P, Kreyenberg H, Hoelle W, Dueckers G, Handgretinger R, Lang P et al. Increasing mixed chimerism is an important prognostic factor for unfavorable outcome in children with acute lymphoblastic leukemia after allogeneic stem-cell transplantation: possible role for pre-emptive immunotherapy? J Clin Oncol 2004; 22: 1696–1705.

    Article  PubMed  Google Scholar 

  70. Bader P, Willasch A, Klingebiel T . Monitoring of post-transplant remission of childhood malignancies: is there a standard? Bone Marrow Transplant 2008; 42 (Suppl 2): S31–S34.

    Article  PubMed  Google Scholar 

  71. Bacher U, Zander AR, Haferlach T, Schnittger S, Fehse B, Kroger N . Minimal residual disease diagnostics in myeloid malignancies in the post transplant period. Bone Marrow Transplant 2008; 42: 145–157.

    Article  CAS  PubMed  Google Scholar 

  72. Candoni A, Toffoletti E, Gallina R, Simeone E, Chiozzotto M, Volpetti S et al. Monitoring of minimal residual disease by quantitative WT1 gene expression following reduced intensity conditioning allogeneic stem cell transplantation in acute myeloid leukemia. Clin Transplant 2011; 25: 308–316.

    Article  CAS  PubMed  Google Scholar 

  73. Miyazaki T, Fujita H, Fujimaki K, Hosoyama T, Watanabe R, Tachibana T et al. Clinical significance of minimal residual disease detected by multidimensional flow cytometry: Serial monitoring after allogeneic stem cell transplantation for acute leukemia. Leuk Res 2012; 36: 998–1003.

    Article  PubMed  Google Scholar 

  74. Lo Coco F, Diverio D, Avvisati G, Petti MC, Meloni G, Pogliani EM et al. Therapy of molecular relapse in acute promyelocytic leukemia. Blood 1999; 94: 2225–2229.

    Article  CAS  PubMed  Google Scholar 

  75. Esteve J, Escoda L, Martín G, Rubio V, Díaz-Mediavilla J, González M et al. Outcome of patients with acute promyelocytic leukemia failing to front-line treatment with all-trans retinoic acid and anthracycline-based chemotherapy (PETHEMA protocols LPA96 and LPA99): benefit of an early intervention. Leukemia 2007; 21: 446–452.

    Article  CAS  PubMed  Google Scholar 

  76. Grimwade D, Jovanovic JV, Hills RK, Nugent EA, Patel Y, Flora R et al. Prospective minimal residual disease monitoring to predict relapse of acute promyelocytic leukemia and to direct pre-emptive arsenic trioxide therapy. J Clin Oncol 2009; 27: 3650–3658.

    Article  CAS  PubMed  Google Scholar 

  77. Bassan R, Spinelli O, Oldani E, Intermesoli T, Tosi M, Peruta B et al. Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL). Blood 2009; 113: 4153–4162.

    Article  CAS  PubMed  Google Scholar 

  78. Rubnitz JE, Inaba H, Dahl G, Ribeiro RC, Bowman WP, Taub J et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol 2010; 11: 543–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Giebel S, Holowiecki J, Krawczyk-Kulis M, Jagoda K, Piszcz J, Paluszewska M et al. Improved outcome of adult acute lymphoblastic leukemia treated with individualized protocol adjusted to the status of minimal residual disease and age. Interim analysis of PALG ALL 5-2007 study (abstract no. 2138). Blood 2010; 116: 883.

    Article  Google Scholar 

  80. Lee S, Kim DW, Kim YJ, Chung NG, Kim YL, Hwang JY et al. Minimal residual disease-based role of imatinib as a first-line interim therapy prior to allogeneic stem cell transplantation in Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 2003; 102: 3068–3070.

    Article  CAS  PubMed  Google Scholar 

  81. Topp MS, Kufer P, Gökbuget N, Goebeler M, Klinger M, Neumann S et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 2011; 29: 2493–2498.

    Article  CAS  PubMed  Google Scholar 

  82. Ogawa H, Tsuboi A, Oji Y, Tamaki H, Soma T, Inoue K et al. Successful donor leukocyte transfusion at molecular relapse for a patient with acute myeloid leukemia who was treated with allogenic bone marrow transplantation: importance of the monitoring of minimal residual disease by WT1 assay. Bone Marrow Transplant 1998; 21: 525–527.

    Article  CAS  PubMed  Google Scholar 

  83. Bradfield SM, Radich JP, Loken MR . Graft-versus-leukemia effect in acute lymphoblastic leukemia: the importance of tumor burden and early detection. Leukemia 2004; 18: 1156–1158.

    Article  CAS  PubMed  Google Scholar 

  84. Dominietto A, Pozzi S, Miglino M, Albarracin F, Piaggio G, Bertolotti F et al. Donor lymphocyte infusions for the treatment of minimal residual disease in acute leukemia. Blood 2007; 109: 5063–5064.

    Article  CAS  PubMed  Google Scholar 

  85. Rettinger E, Willasch AM, Kreyenberg H, Borkhardt A, Holter W, Kremens B et al. Preemptive immunotherapy in childhood acute myeloid leukemia for patients showing evidence of mixed chimerism after allogeneic stem cell transplantation. Blood 2011; 118: 5681–5688.

    Article  CAS  PubMed  Google Scholar 

  86. Yan CH, Liu DH, Liu KY, Xu LP, Liu YR, Chen H et al. Risk stratification-directed donor lymphocyte infusion could reduce relapse of standard-risk acute leukemia patients after allogeneic hematopoietic stem cell transplantation. Blood 2012; 119: 3256–3262.

    Article  CAS  PubMed  Google Scholar 

  87. Formánková R, Sedlácek P, Krsková L, Rihová H, Srámková L, Star J . Chimerism-directed adoptive immunotherapy in prevention and treatment of post-transplant relapse of leukemia in childhood. Haematologica 2003; 88: 117–118.

    PubMed  Google Scholar 

  88. Zeiser R, Spyridonidis A, Wäsch R, Ihorst G, Grüllich C, Bertz H et al. Evaluation of immunomodulatory treatment based on conventional and lineage-specific chimerism analysis in patients with myeloid malignancies after myeloablative allogeneic hematopoietic cell transplantation. Leukemia 2005; 19: 814–821.

    Article  CAS  PubMed  Google Scholar 

  89. Bornhäuser M, Oelschlaegel U, Platzbecker U, Bug G, Lutterbeck K, Kiehl MG et al. Monitoring of donor chimerism in sorted CD34+ peripheral blood cells allows the sensitive detection of imminent relapse after allogeneic stem cell transplantation. Haematologica 2009; 94: 1613–1617.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lankester AC, Bierings MB, van Wering ER, Wijkhuijs AJ, de Weger RA, Wijnen JT et al. Preemptive alloimmune intervention in high-risk pediatric acute lymphoblastic leukemia patients guided by minimal residual disease level before stem cell transplantation. Leukemia 2010; 24: 1462–1469.

    Article  CAS  PubMed  Google Scholar 

  91. Platzbecker U, Wermke M, Radke J, Oelschlaegel U, Seltmann F, Kiani A et al. Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HSCT: results of the RELAZA trial. Leukemia 2012; 26: 381–389.

    Article  CAS  PubMed  Google Scholar 

  92. Grimwade D, Jamal R, Goulden N, Kempski H, Mastrangelo S, Veys P . Salvage of patients with acute promyelocytic leukaemia with residual disease following ABMT performed in second CR using all-trans retinoic acid. Br J Haematol 1998; 103: 559–562.

    Article  CAS  PubMed  Google Scholar 

  93. Wassmann B, Pfeifer H, Stadler M, Bornhäuser M, Bug G, Scheuring UJ et al. Early molecular response to posttransplantation imatinib determines outcome in MRD+Philadelphia-positive acute lymphoblastic leukemia (Ph+ALL). Blood 2005; 106: 458–463.

    Article  CAS  PubMed  Google Scholar 

  94. Nishiwaki S, Miyamura K, Kato C, Terakura S, Ohashi K, Sakamaki H et al. Impact of post-transplant imatinib administration on Philadelphia chromosome-positive acute lymphoblastic leukaemia. Anticancer Res 2010; 30: 2415–2418.

    CAS  PubMed  Google Scholar 

  95. Wu D, Sherwood A, Fromm JR, Winter SS, Dunsmore KP, Loh ML et al. High-throughput sequencing detects minimal residual disease in acute T lymphoblastic leukemia. Sci Transl Med 2012; 4: 134ra163.

    Article  CAS  Google Scholar 

  96. Plachy R, Zeyskova L, Cmejla R, Hardekopf DW, Jancuskova T, Krutilkova L et al. Five-color multiplex real-time PCR technology to detect over 75 recurrent chromosomal abnormalities in acute myeloid leukemia; benefits for minimal residual disease detection (abstract no. 2526). Blood 2011; 118: 1083.

    Article  Google Scholar 

  97. Faham M, Willis T, Moorhead M, Carlton V, Zheng J, Campana D . Highly sensitive detection of minimal residual disease in acute lymphoblastic leukemia using next-generation sequencing of immunoglobulin heavy chain variable region (abstract no. 2540). Blood 2011; 118: 1089–1090.

    Article  Google Scholar 

  98. Brüggemann M, Schrauder A, Raff T, Pfeifer H, Dworzak M, Ottmann OG et al. Standardized MRD quantification in European ALL trials, proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18–20 September 2008. Leukemia 2010; 24: 521–535.

    Article  PubMed  Google Scholar 

  99. Pfeifer H, Cazzaniga G, Spinelli O, Cayuela J-M, Cave H, Vandenberghe P et al. International standardization of minimal residual disease assessment for in Philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ALL) expressing m-BCR-ABL transcripts: updated results of quality control procedures by the EWALL and ESG-MRD-ALL Consortia (abstract no. 2535). Blood 2011; 118: 1087.

    Google Scholar 

  100. Hoelzer D, Gökbuget N, Ottmann O, Pui CH, Relling MV, Appelbaum FR et al. Acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2002;, 162–192.

    Article  Google Scholar 

  101. Kern W, Schnittger S, Schoch C, Haferlach T . Monitoring of minimal residual disease in acute myeloid leukemia. Atlas Genet Cytogenet Oncol Haematol 2004; 4: 727–741.

    Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the National Cancer Institute/National Institutes of Health (P30-CA015704-35S6 to RBW).

Authors contribution: SAB, FRA and RBW are responsible for the conception and writing of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R B Walter.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckley, S., Appelbaum, F. & Walter, R. Prognostic and therapeutic implications of minimal residual disease at the time of transplantation in acute leukemia. Bone Marrow Transplant 48, 630–641 (2013). https://doi.org/10.1038/bmt.2012.139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2012.139

Keywords

This article is cited by

Search

Quick links