Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stem Cell Procurement

Plerixafor plus granulocyte CSF can mobilize hematopoietic stem cells from multiple myeloma and lymphoma patients failing previous mobilization attempts: EU compassionate use data

Abstract

Plerixafor was recently approved by the US Food and Drug Administration (FDA) and the European Medicines Evaluation Agency (EMEA) to enhance stem cell mobilization for autologous transplant in patients with lymphoma and multiple myeloma. In this study, we present the first European compassionate use experience in mobilization failures, patients who are hardest to remobilize but were not included in registration trials. A total of 56 consecutive patients from 15 centers in Spain and the United Kingdom were included: age 60 (33–69) years; 29 men (32 with myeloma and 24 with lymphoma); 2 lines of previous chemotherapy (1–10); 73 previously failed mobilization attempts with G-CSF (28), chemotherapy plus G-CSF (43) or G-CSF plus SCF(2). Overall, 71% of patients reached 10 CD34+ cells per μL with plerixafor on day 5 after a 7.6-fold expansion from day 4. A total of 42 patients (75%) collected 2 × 106, average 3.0±1.7 (0.4–10.6) CD34+ cells per kg with plerixafor plus G-CSF. There were no severe drug-related adverse events. In all, 35 patients (63%) underwent transplant, receiving an average of 3.1±1.2 (1.9–7.7) × 106 CD34+ cells per kg. All patients engrafted neutrophils (day 12; 13.4±0.8; 8–30) and platelets (day 15; 18.5±2.4; 8–33). In our experience, plerixafor offers an effective alternative to collect sufficient CD34+ cells for autologous SCT from patients who fail conventional mobilization methods, with good tolerance and a high success rate.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Gratwohl A, Baldomero H . Trends of hematopoietic stem cell transplantation in the third millennium. Curr Opin Hematol 2009; 16: 420–426.

    Article  Google Scholar 

  2. Child JA, Morgan GJ, Davies FE, Owen RG, Bell SE, Hawkins K et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med 2003; 348: 1875–1883.

    Article  CAS  Google Scholar 

  3. Villanueva ML, Vose JM . The role of hematopoietic stem cell transplantation in non-Hodgkin lymphoma. Clin Adv Hematol Oncol 2006; 4: 521–530.

    PubMed  Google Scholar 

  4. Schmitz N, Linch DC, Dreger P, Goldstone AH, Boogaerts MA, Ferrant A et al. Randomized trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients. Lancet 1996; 347: 353–357.

    Article  CAS  Google Scholar 

  5. Beyer J, Schwella N, Zingsem J, Strohscheer I, Schwaner I, Oettle H et al. Hematopoietic rescue after high-dose chemotherapy using autologous peripheral-blood progenitor cells or bone marrow: a randomized comparison. J Clin Oncol 1995; 13: 1328–1335.

    Article  CAS  Google Scholar 

  6. Gratwohl A, Baldomero H, Schwendener A, Rocha V, Apperley J, Frauendorfer K et al. The EBMT activity survey 2007 with focus on allogeneic HSCT for AML and novel cellular therapies. Bone Marrow Transplant 2009; 43: 275–291.

    Article  CAS  Google Scholar 

  7. Siena S, Schiavo R, Pedrazzoli P, Carlo-Stella C . Therapeutic relevance of CD34 cell dose in blood cell transplantation for cancer therapy. J Clin Oncol 2000; 18: 1360–1377.

    Article  CAS  Google Scholar 

  8. Weaver CH, Hazelton B, Birch R, Palmer P, Allen C, Schwartzberg L et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood 1995; 86: 3961–3969.

    CAS  Google Scholar 

  9. Bolwell BJ, Pohlman B, Rybicki L, Sobecks R, Dean R, Curtis J et al. Patients mobilizing large numbers of CD34+ cells (‘super mobilizers’) have improved survival in autologous stem cell transplantation for lymphoid malignancies. Bone Marrow Transplant 2007; 40: 437–441.

    Article  CAS  Google Scholar 

  10. Tricot G, Jagannath S, Vesole D, Nelson J, Tindle S, Miller L et al. Peripheral blood stem cell transplants for multiple myeloma: identification of favorable variables for rapid engraftment in 225 patients. Blood 1995; 85: 588–596.

    CAS  PubMed  Google Scholar 

  11. Bender JG, To LB, William S, Schwartzberg LS . Defining a therapeutic dose of peripheral blood stem cells. J Hematother 1992; 1: 329–341.

    Article  CAS  Google Scholar 

  12. Villalon L, Odriozola J, Laraña JG, Zamora C, Pérez de Oteyza J, Jodra MH et al. Autologous peripheral blood progenitor cell transplantation with <2 × 10(6) CD34(+)/kg: an analysis of variables concerning mobilisation and engraftment. Hematol J 2000; 1: 374–381.

    Article  CAS  Google Scholar 

  13. Dreger P, Kloss M, Petersen B, Haferlach T, Löffler H, Loeffler M et al. Autologous progenitor cell transplantation: prior exposure to stem cell-toxic drugs determines yield and engraftment of peripheral blood progenitor cells but not of bone marrow grafts. Blood 1995; 86: 3970–3978.

    CAS  PubMed  Google Scholar 

  14. Tarella C, Di Nicola M, Caracciolo D, Zallio F, Cuttica A, Omedè P et al. High-dose ara-C with autologous peripheral blood progenitor cell support induces a marked progenitor cell mobilization: an indication for patients at risk for low mobilization. Bone Marrow Transplant 2002; 30: 725–732.

    Article  CAS  Google Scholar 

  15. Pusic I, Jiang YJ, Landua S, Uy GL, Rettig MP, Cashen AF et al. Impact of mobilization and remobilization strategies on achieving sufficient stem cell yields for autologous transplantation. Biol Blood Marrow Transplant 2008; 14: 1045–1056.

    Article  CAS  Google Scholar 

  16. Rettig MP, Ramírez P, Nervi B, DiPersio JF . CXCR4 and mobilization of hematopoietic precursors. Methods Enzymol 2009; 460: 57–90.

    Article  CAS  Google Scholar 

  17. DiPersio JF, Stadtmauer EA, Nademanee A, Micallef IN, Stiff PJ, Kaufman JL et al. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood 2009; 113: 5720–5726.

    CAS  PubMed  Google Scholar 

  18. DiPersio JF, Micallef IN, Stiff PJ, Bolwell BJ, Maziarz RT, Jacobsen E et al. Phase III prospective randomized double-blind placebo-controlled trial of plerixafor plus granulocyte colony-stimulating factor compared with placebo plus granulocyte colony-stimulating factor for autologous stem-cell mobilization and transplantation for patients with non-Hodgkin lymphoma. J Clin Oncol 2009; 27: 4767–4773.

    Article  CAS  Google Scholar 

  19. Kumar S, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Gastineau DA et al. Impact of lenalidomide therapy on stem cell mobilization and engraftment post-peripheral blood stem cell transplantation in patients with newly diagnosed myeloma. Leukemia 2007; 21: 2035–2042.

    Article  CAS  Google Scholar 

  20. Calandra G, McCarty J, McGuirk J, Tricot G, Crocker SA, Badel K et al. AMD3100 plus G-CSF can successfully mobilize CD34+ cells from non-Hodgkin's lymphoma, Hodgkin's disease and multiple myeloma patients previously failing mobilization with chemotherapy and/or cytokine treatment: compassionate use data. Bone Marrow Transplant 2008; 41: 331–338.

    Article  CAS  Google Scholar 

  21. Fowler CJ, Dunn A, Hayes-Lattin B, Hansen K, Hansen L, Lanier K et al. Rescue from failed growth factor and/or chemotherapy HSC mobilization with G-CSF and plerixafor (AMD3100): an institutional experience. Bone Marrow Transplant 2009; 43: 909–917.

    Article  CAS  Google Scholar 

  22. Weaver CH, Tauer K, Zhen B, Schwartzberg LS, Hazelton B, Weaver Z et al. Second attempts at mobilization of peripheral blood stem cells in patients with initial low CD34+ cell yields. J Hematother 1998; 7: 241–249.

    Article  CAS  Google Scholar 

  23. Fraipont V, Sautois B, Baudoux E, Pereira M, Fassotte MF, Hermane JP et al. Successful mobilization of peripheral blood HPCs with G-CSF alone in patients failing to achieve sufficient numbers of CD34+ cells and/or CFU-GM with chemotherapy and G-CSF. Transfusion 2000; 40: 339–347.

    Article  CAS  Google Scholar 

  24. Boeve S, Strupeck J, Creech S, Stiff PJ . Analysis of remobilization success in patients undergoing autologous stem cell transplants who fail an initial mobilization: risk factors, cytokine use and cost. Bone Marrow Transplant 2004; 33: 997–1003.

    Article  CAS  Google Scholar 

  25. Goterris R, Hernandez-Boluda JC, Teruel A, Gomez C, Lis MJ, Terol MJ et al. Impact of different strategies of second line stem cell harvest on the outcome of autologous transplantation in poor peripheral blood stem cell mobilizers. Bone Marrow Transplant 2005; 36: 847–853.

    Article  CAS  Google Scholar 

  26. Pusic I, Jiang YJ, Landua S, Uy GL, Rettig MP, Cashen AF et al. Impact of mobilization and remobilization strategies on achieving sufficient stem cell yields for autologous transplantation. Biol Blood Marrow Transplant 2008; 14: 1045–1056.

    Article  CAS  Google Scholar 

  27. Lefrere F, Levy V, Makke J, Audat F, Cavazzana-Calvo M, Miclea JM . Successful peripheral blood stem cell harvesting with granulocyte colony-stimulating factor alone after previous mobilization failure. Haematologica 2004; 89: 1532–1534.

    PubMed  Google Scholar 

  28. Gabriel IH, Sharon J, Olavarria E, Rahemtulla A, Kanfer E, Marin D et al. Efficacy, complication rates, and cost effectiveness of chemotherapy plus granulocyte colony stimulating factor conditioned mobilisation of peripheral blood haematopoietic stem cells in over 150 patients with haematological malignancies. Blood 2008; 112: S2378.

    Google Scholar 

  29. Hendrix CW, Flexner C, MacFarland RT, Giandomenico C, Fuchs EJ, Redpath E et al. Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chemokine receptor, in human volunteers. Antimicrob Agents Chemother 2000; 44: 1667–1673.

    Article  CAS  Google Scholar 

  30. Hendrix CW, Collier AC, Lederman MM, Schols D, Pollard RB, Brown S et al. AMD3100 HIV Study Group. Safety, pharmacokinetics, and antiviral activity of AMD3100, a selective CXCR4 receptor inhibitor, in HIV-infection. J Accquir Immune Defic Syndr 2004; 37: 1253–1262.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R F Duarte.

Ethics declarations

Competing interests

HA and PJG are employees of Genzyme Corporation. RFD and NHR report consultancy and speaker fees from Genzyme Corporation. The remaining authors have nothing to disclose. This study has been presented in part at the annual meeting of the EBMT 2009 (Bone Marrow Transplant 43: S80 (Abstract O421).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte, R., Shaw, B., Marín, P. et al. Plerixafor plus granulocyte CSF can mobilize hematopoietic stem cells from multiple myeloma and lymphoma patients failing previous mobilization attempts: EU compassionate use data. Bone Marrow Transplant 46, 52–58 (2011). https://doi.org/10.1038/bmt.2010.54

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2010.54

Keywords

This article is cited by

Search

Quick links