Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A dual-Ca2+-sensor model for neurotransmitter release in a central synapse

Abstract

Ca2+-triggered synchronous neurotransmitter release is well described, but asynchronous release—in fact, its very existence—remains enigmatic. Here we report a quantitative description of asynchronous neurotransmitter release in calyx-of-Held synapses. We show that deletion of synaptotagmin 2 (Syt2) in mice selectively abolishes synchronous release, allowing us to study pure asynchronous release in isolation. Using photolysis experiments of caged Ca2+, we demonstrate that asynchronous release displays a Ca2+ cooperativity of 2 with a Ca2+ affinity of 44 μM, in contrast to synchronous release, which exhibits a Ca2+ cooperativity of 5 with a Ca2+ affinity of 38 μM. Our results reveal that release triggered in wild-type synapses at low Ca2+ concentrations is physiologically asynchronous, and that asynchronous release completely empties the readily releasable pool of vesicles during sustained elevations of Ca2+. We propose a dual-Ca2+-sensor model of release that quantitatively describes the contributions of synchronous and asynchronous release under conditions of different presynaptic Ca2+ dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calyx synapses in Syt2-deficient mice.
Figure 2: Synaptic transmission evoked by isolated action potentials.
Figure 3: RRP size, Ca 2+  currents and release kinetics in Syt2-deficient calyx synapses.
Figure 4: Relationship between peak vesicular release rates and [Ca2+]i in calyx terminals.
Figure 5: A dual-Ca 2+ -sensor model for neurotransmitter release.

Similar content being viewed by others

References

  1. Meinrenken, C. J., Borst, J. G. & Sakmann, B. Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. J. Physiol. (Lond.) 547, 665–689 (2003)

    CAS  Google Scholar 

  2. Schneggenburger, R. & Neher, E. Presynaptic calcium and control of vesicle fusion. Curr. Opin. Neurobiol. 15, 266–274 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. Atluri, P. P. & Regehr, W. G. Delayed release of neurotransmitter from cerebellar granule cells. J. Neurosci. 18, 8214–8227 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lu, T. & Trussell, L. O. Inhibitory transmission mediated by asynchronous transmitter release. Neuron 26, 683–694 (2000)

    Article  CAS  PubMed  Google Scholar 

  5. Hagler, D. J. & Goda, Y. Properties of synchronous and asynchronous release during pulse train depression in cultured hippocampal neurons. J. Neurophysiol. 85, 2324–2334 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. Otsu, Y. et al. Competition between phasic and asynchronous release for recovered synaptic vesicles at developing hippocampal autaptic synapses. J. Neurosci. 24, 420–433 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hefft, S. & Jonas, P. Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron–principal neuron synapse. Nature Neurosci. 8, 1319–1328 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Forsythe, I. D. Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro . J. Physiol. (Lond.) 479, 381–387 (1994)

    Article  Google Scholar 

  9. Borst, J. G. & Sakmann, B. Calcium influx and transmitter release in a fast CNS synapse. Nature 383, 431–434 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Sun, J. Y. & Wu, L. G. Fast kinetics of exocytosis revealed by simultaneous measurements of presynaptic capacitance and postsynaptic currents at a central synapse. Neuron 30, 171–182 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889–893 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Bollmann, J. H., Sakmann, B. & Borst, J. G. Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289, 953–957 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Geppert, M. et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994)

    Article  CAS  PubMed  Google Scholar 

  14. Fernandez-Chacon, R. et al. Synaptotagmin I functions as a Ca2+-regulator of release probability. Nature 410, 41–49 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Stevens, C. F. & Sullivan, J. M. The synaptotagmin C2A domain is part of the calcium sensor controlling fast synaptic transmission. Neuron 39, 299–308 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. Nagy, G. et al. Different effects on fast exocytosis induced by synaptotagmin 1 and 2 isoforms and abundance, but not by phosphorylation. J. Neurosci. 26, 632–643 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pang, Z. P. et al. Synaptotagmin-2 is essential for survival and contributes to Ca2+ triggering of neurotransmitter release in central and neuromuscular synapses. J. Neurosci. 26, 13493–13504 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu, J., Mashimo, T. & Südhof, T. C. Synaptotagmin-1, -2, and -9: Ca2+-sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron 54, 801–812 (2007)

    Article  CAS  Google Scholar 

  19. Pang, Z. P., Sun, J., Rizo, J., Maximov, A. & Südhof, T. C. Genetic analysis of Syt2 in spontaneous and Ca2+-triggered neurotransmitter release. EMBO J. 25, 2039–2050 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goda, Y. & Stevens, C. F. Two components of transmitter release at a central synapse. Proc. Natl Acad. Sci. USA 91, 12942–12946 (1994)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ravin, R., Spira, M. E., Parnas, H. & Parnas, I. Simultaneous measurement of intracellular Ca2+ and asynchronous transmitter release from the same crayfish bouton. J. Physiol. (Lond.) 501, 251–262 (1997)

    Article  CAS  Google Scholar 

  22. Maximov, A. & Südhof, T. C. Autonomous function of synaptotagmin 1 in triggering asynchronous release independent of asynchronous release. Neuron 48, 547–554 (2005)

    Article  CAS  PubMed  Google Scholar 

  23. Chuhma, N. & Ohmori, H. Role of Ca2+ in the synchronization of transmitter release at calyceal synapses in the auditory system of rat. J. Neurophysiol. 87, 222–228 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. Schneggenburger, R. & Forsythe, I. D. The calyx of Held. Cell Tissue Res. 326, 311–337 (2006)

    Article  PubMed  Google Scholar 

  25. Lou, X., Scheuss, V. & Schneggenburger, R. Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion. Nature 435, 497–501 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Iwasaki, S. & Takahashi, T. Developmental changes in calcium channel types mediating synaptic transmission in rat auditory brainstem. J. Physiol. (Lond.) 509, 419–423 (1998)

    Article  CAS  Google Scholar 

  27. Wu, L. G., Westenbroek, R. E., Borst, J. G., Catterall, W. A. & Sakmann, B. Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J. Neurosci. 19, 726–736 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leveque, C. et al. Purification of the N-type calcium channel associated with syntaxin and synaptotagmin. A complex implicated in synaptic vesicle exocytosis. J. Biol. Chem. 269, 6306–6312 (1994)

    Article  CAS  PubMed  Google Scholar 

  29. Charvin, N. et al. Direct interaction of the calcium sensor protein synaptotagmin I with a cytoplasmic domain of the α1A subunit of the P/Q-type calcium channel. EMBO J. 16, 4591–4596 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhong, H., Yokoyama, C. T., Scheuer, T. & Catterall, W. A. Reciprocal regulation of P/Q-type Ca2+ channels by SNAP-25, syntaxin and synaptotagmin. Nature Neurosci. 2, 939–941 (1999)

    Article  CAS  PubMed  Google Scholar 

  31. Sakaba, T. & Neher, E. Quantitative relationship between transmitter release and calcium current at the calyx of Held synapse. J. Neurosci. 21, 462–476 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stevens, C. F. & Wesseling, J. F. Activity-dependent modulation of the rate at which synaptic vesicles become available to undergo exocytosis. Neuron 21, 415–424 (1998)

    Article  CAS  PubMed  Google Scholar 

  33. Mulkey, R. M. & Zucker, R. S. Action potentials must admit calcium to evoke transmitter release. Nature 350, 153–155 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Heidelberger, R., Heinemann, C., Neher, E. & Matthews, G. Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371, 513–515 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Awatramani, G. B., Price, G. D. & Trussell, L. O. Modulation of transmitter release by presynaptic resting potential and background calcium levels. Neuron 48, 109–121 (2005)

    Article  CAS  PubMed  Google Scholar 

  36. Taschenberger, H., Scheuss, V. & Neher, E. Release kinetics, quantal parameters and their modulation during short-term depression at a developing synapse in the rat CNS. J. Physiol. (Lond.) 568, 513–537 (2005)

    Article  CAS  Google Scholar 

  37. Wadel, K., Neher, E. & Sakaba, T. The coupling between synaptic vesicles and Ca2+ channels determines fast neurontransmitter release. Neuron 53, 563–575 (2007)

    Article  CAS  PubMed  Google Scholar 

  38. Wölfel, M., Lou, X. & Schneggenburger, R. A mechanism intrinsic to the vesicle fusion machinery determines fast and slow transmitter release at a large CAN synapse. J. Neurosci. 27, 3198–3210 (2007)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Trommershauser, J., Schneggenburger, R., Zippelius, A. & Neher, E. Heterogeneous presynaptic release probabilities: functional relevance for short-term plasticity. Biophys. J. 84, 1563–1579 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kushmerick, C., Renden, R. & von Gersdorff, H. Physiological temperatures reduce the rate of vesicle pool depletion and short-term depression via an acceleration of vesicle recruitment. J. Neurosci. 26, 1366–1377 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bollmann, J. H. & Sakmann, B. Control of synaptic strength and timing by the release-site Ca2+ signal. Nature Neurosci. 8, 426–434 (2005)

    Article  CAS  PubMed  Google Scholar 

  42. Sun, J., Bronk, P., Liu, X., Han, W. & Südhof, T. C. Synapsins regulate use-dependent synaptic plasticity in the calyx of Held by a Ca2+/calmodulin-dependent pathway. Proc. Natl Acad. Sci. USA 103, 2880–2885 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Kornblum, A. Roth, L. Fan and J. Mitchell for excellent technical assistance, and J. Bollmann, X. Lou and R. Schneggenburger for advice. This study was supported by a grant from NARSAD (to J.S.) and by The University of Texas M. D. Anderson Cancer Center Physician Scientist Program (R.A.).

Author Contributions J.S. performed the electrophysiology and photolysis experiments and modelling. Z.P.P. carried out the biochemical, immunohistochemical, and mouse genetics experiments; D.Q. participated in the electrophysiology and photolysis experiments; A.T. F. and R.A. generated the Syt2 knockout mice, and T.C.S. and J.S. designed the experiments and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianyuan Sun or Thomas C. Südhof.

Supplementary information

Supplementary Information

The file contains Supplementary Methods with additional references, Supplementary Tables 1-2 and Supplementary Figures 1-14 with Legends. (PDF 1893 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Pang, Z., Qin, D. et al. A dual-Ca2+-sensor model for neurotransmitter release in a central synapse. Nature 450, 676–682 (2007). https://doi.org/10.1038/nature06308

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06308

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing