Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of nucleotide exchange and client binding by the Hsp70 cochaperone Bag2

Abstract

Cochaperones are essential for Hsp70- and Hsc70-mediated folding of proteins and include nucleotide-exchange factors (NEFs) that assist protein folding by accelerating ADP-ATP exchange on Hsp70. The cochaperone Bag2 binds misfolded Hsp70 clients and also acts as an NEF, but the molecular basis for its function is unclear. We show that, rather than being a member of the Bag domain family, Bag2 contains a new type of Hsp70 NEF domain, which we call the 'brand new bag' (BNB) domain. Free and Hsc70-bound crystal structures of Bag2-BNB show its dimeric structure, in which a flanking linker helix and loop bind to Hsc70 to promote nucleotide exchange. NMR analysis demonstrates that the client binding sites and Hsc70-interaction sites of the Bag2-BNB overlap, and that Hsc70 can displace clients from Bag2-BNB, indicating a distinct mechanism for the regulation of Hsp70-mediated protein folding by Bag2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the Bag2-BNB domain.
Figure 2: Structure of the Hsc70-NBD–Bag2-BNB domain complex.
Figure 3: Mechanism of Bag2-BNB–mediated nucleotide exhange.
Figure 4: Effects of Bag2 mutations on Hsc70 binding, nucleotide exchange and substrate refolding activity.
Figure 5: Mapping of chaperone client binding sites on Bag2-BNB domains.
Figure 6: Models for Hsp70, Bag2 and chaperone client interaction.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Mayer, M.P. & Bukau, B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62, 670–684 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Morano, K.A. New tricks for an old dog: the evolving world of Hsp70. Ann. NY Acad. Sci. 1113, 1–14 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Qiu, X.B., Shao, Y.M., Miao, S. & Wang, L. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell. Mol. Life Sci. 63, 2560–2570 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Cyr, D.M. Swapping nucleotides, tuning Hsp70. Cell 133, 945–947 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Young, J.C., Barral, J.M. & Ulrich Hartl, F. More than folding: localized functions of cytosolic chaperones. Trends Biochem. Sci. 28, 541–547 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Takayama, S. & Reed, J.C. Molecular chaperone targeting and regulation by BAG family proteins. Nat. Cell Biol. 3, E237–E241 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Takayama, S., Xie, Z. & Reed, J.C. An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J. Biol. Chem. 274, 781–786 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Sondermann, H. et al. Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science 291, 1553–1557 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Arndt, V., Daniel, C., Nastainczyk, W., Alberti, S. & Hohfeld, J. BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Mol. Biol. Cell 16, 5891–5900 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dai, Q. et al. Regulation of the cytoplasmic quality control protein degradation pathway by BAG2. J. Biol. Chem. 280, 38673–38681 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Briknarova, K. et al. Structural analysis of BAG1 cochaperone and its interactions with Hsc70 heat shock protein. Nat. Struct. Biol. 8, 349–352 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Kleinjung, J. & Fraternali, F. POPSCOMP: an automated interaction analysis of biomolecular complexes. Nucleic Acids Res. 33, W342–W346 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Flaherty, K.M., DeLuca-Flaherty, C. & McKay, D.B. Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346, 623–628 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Jiang, J., Prasad, K., Lafer, E.M. & Sousa, R. Structural basis of interdomain communication in the Hsc70 chaperone. Mol. Cell 20, 513–524 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harrison, C.J., Hayer-Hartl, M., Di Liberto, M., Hartl, F. & Kuriyan, J. Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276, 431–435 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Polier, S., Dragovic, Z., Hartl, F.U. & Bracher, A. Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 133, 1068–1079 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Shomura, Y. et al. Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol. Cell 17, 367–379 (2005).

    CAS  PubMed  Google Scholar 

  18. Schuermann, J.P. et al. Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol. Cell 31, 232–243 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gassler, C.S., Wiederkehr, T., Brehmer, D., Bukau, B. & Mayer, M.P. Bag-1M accelerates nucleotide release for human Hsc70 and Hsp70 and can act concentration-dependent as positive and negative cofactor. J. Biol. Chem. 276, 32538–32544 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Meacham, G.C., Patterson, C., Zhang, W., Younger, J.M. & Cyr, D.M. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat. Cell Biol. 3, 100–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Younger, J.M. et al. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell 126, 571–582 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Li, J., Qian, X. & Sha, B. The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate. Structure 11, 1475–1483 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Hu, J. et al. The crystal structure of the putative peptide-binding fragment from the human Hsp40 protein Hdj1. BMC Struct. Biol. 8, 3 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, Q. & Hendrickson, W.A. Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131, 106–120 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Siegert, R., Leroux, M.R., Scheufler, C., Hartl, F.U. & Moarefi, I. Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103, 621–632 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Ludlam, A.V., Moore, B.A. & Xu, Z. The crystal structure of ribosomal chaperone trigger factor from Vibrio cholerae. Proc. Natl. Acad. Sci. USA 101, 13436–13441 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ehrnsperger, M., Lilie, H., Gaestel, M. & Buchner, J. The dynamics of Hsp25 quaternary structure. Structure and function of different oligomeric species. J. Biol. Chem. 274, 14867–14874 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Haley, D.A., Horwitz, J. & Stewart, P.L. The small heat-shock protein, αb-crystallin, has a variable quaternary structure. J. Mol. Biol. 277, 27–35 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. McDonough, H. & Patterson, C. CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8, 303–308 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murata, S., Chiba, T. & Tanaka, K. CHIP: a quality-control E3 ligase collaborating with molecular chaperones. Int. J. Biochem. Cell Biol. 35, 572–578 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Walker, V.E., Atanasiu, R., Lam, H. & Shrier, A. Co-chaperone FKBP38 promotes HERG trafficking. J. Biol. Chem. 282, 23509–23516 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Sheffield, P., Garrard, S. & Derewenda, Z. Overcoming expression and purification problems of RhoGDI using a family of “parallel” expression vectors. Protein Expr. Purif. 15, 34–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Pflugrath, J.W. The finer things in X-ray diffraction data collection. Acta Crystallogr. D Biol. Crystallogr. 55, 1718–1725 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  PubMed  Google Scholar 

  35. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  36. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Schleucher, J. et al. A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J. Biomol. NMR 4, 301–306 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Grzesiek, S., Stahl, S.J., Wingfield, P.T. & Bax, A. The CD4 determinant for downregulation by HIV-1 Nef directly binds to Nef. Mapping of the Nef binding surface by NMR. Biochemistry 35, 10256–10261 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the US National Institutes of Health (R01-GM61728 to C.P. and RO1-GM080271 to S.M.), the American Heart Association (SDG 0735313N to S.M.) and by funds from the State of Ohio Eminent Scholar Program (to A.B.H.). E.K. was supported by funds from the Ralph Wilson Medical Research Foundation. The Advanced Light Source is supported by the US Department of Energy under contract number DE-AC03-76SF00098 at Lawrence Berkeley National Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

Z.X. and E.K. cloned, expressed and purified the various protein constructs; Z.X., J.C.N. and S.M. carried out crystallization, data collection and crystal structure solution; R.C.P. expressed and purified labeled proteins and carried out NMR experiments and data analysis; M.M.G. carried out analytical ultracentrifugation experiments, and M.M.G. and A.B.H. interpreted the ultracentrifugation data; E.K. and Z.X. carried out in vitro protein-protein interaction and Luciferase-refolding experiments; C.P. performed the single-turnover nucleotide-exchange assays; S.M. compiled the manuscript with contributions from Z.X., R.C.P., E.K., A.B.H. and C.P.

Corresponding author

Correspondence to Saurav Misra.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1 and Supplementary Methods (PDF 3107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Page, R., Gomes, M. et al. Structural basis of nucleotide exchange and client binding by the Hsp70 cochaperone Bag2. Nat Struct Mol Biol 15, 1309–1317 (2008). https://doi.org/10.1038/nsmb.1518

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1518

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing