Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Commensurate–incommensurate transition in graphene on hexagonal boron nitride

Abstract

When a crystal is subjected to a periodic potential, under certain circumstances it can adjust itself to follow the periodicity of the potential, resulting in a commensurate state. Of particular interest are topological defects between the two commensurate phases, such as solitons and domain walls. Here we report a commensurate–incommensurate transition for graphene on top of hexagonal boron nitride (hBN). Depending on the rotation angle between the lattices of the two crystals, graphene can either stretch to adapt to a slightly different hBN periodicity (for small angles, resulting in a commensurate state) or exhibit little adjustment (the incommensurate state). In the commensurate state, areas with matching lattice constants are separated by domain walls that accumulate the generated strain. Such soliton-like objects are not only of significant fundamental interest, but their presence could also explain recent experiments where electronic and optical properties of graphene-hBN heterostructures were observed to be considerably altered.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the moiré pattern of graphene (red) on hBN (blue).
Figure 2: Experimental observation of moiré patterns for graphene-on-hBN samples with different relative orientation angles.
Figure 3: STM measurements on one of our fully aligned graphene-on-hBN samples.
Figure 4: Raman measurements on aligned and misaligned graphene on hBN samples.
Figure 5: Transport measurements and estimation of a gap on encapsulated and non-encapsulated samples.

Similar content being viewed by others

References

  1. Braun, O. M. & Kivshar, Y. S. The Frenkel–Kontorova Model: Concepts, Methods, and Applications 1st edn (Springer-Verlag, 2004).

    Book  Google Scholar 

  2. Pokrovsky, V. L. & Talapov, A. L. Phase-transitions and oscillation spectra of almost commensurate structures. Zh. Eksp. Teor. Fiz. 75, 1151–1157 (1978).

    Google Scholar 

  3. Gornostyrev, Y. N., Katsnelson, M. I., Kravtsov, A. V. & Trefilov, A. V. Fluctuation-induced nucleation and dynamics of kinks on dislocation: Soliton and oscillation regimes in the two-dimensional Frenkel–Kontorova model. Phys. Rev. B 60, 1013–1018 (1999).

    Article  ADS  Google Scholar 

  4. Frank, F. C. & van der Merwe, J. H. One-dimensional dislocations. I. Static theory. Proc. R. Soc. Lond. Ser. A 198, 205–216 (1949).

    Article  ADS  Google Scholar 

  5. Rockett, A. & Kiely, C. J. Energetics of misfit-dislocation and threading-dislocation arrays in heteroepitaxial films. Phys. Rev. B 44, 1154–1162 (1991).

    Article  ADS  Google Scholar 

  6. Pushpa, R. & Narasimhan, S. Stars and stripes. Nanoscale misfit dislocation patterns on surfaces. Pure Appl. Chem. 74, 1663–1671 (2002).

    Article  Google Scholar 

  7. Chen, S. D., Zhou, Y. K. & Soh, A. K. Molecular dynamics simulations of mechanical properties for Cu(001)/Ni(001) twist boundaries. Comput. Mater. Sci. 61, 239–242 (2012).

    Article  Google Scholar 

  8. Pokrovsky, V. L. & Talapov, A. L. Ground-state, spectrum, and phase-diagram of 2-dimensional incommensurate crystals. Phys. Rev. Lett. 42, 65–67 (1979).

    Article  ADS  Google Scholar 

  9. Fain, S. C., Chinn, M. D. & Diehl, R. D. Commensurate–incommensurate transition of solid krypton monolayers on graphite. Phys. Rev. B 21, 4170–4172 (1980).

    Article  ADS  Google Scholar 

  10. Bak, P. Commensurate phases, incommensurate phases and the Devil’s staircase. Rep. Prog. in Phys. 45, 587–629 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  11. Hirth, J. P. & Lothe, J. Theory of Dislocations 2nd edn 872 (Krieger Publishing Company, 1982).

    Google Scholar 

  12. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  13. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 172–726 (2010).

    Article  Google Scholar 

  14. Tang, S. J. et al. Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition. Sci. Rep. 3, 2666 (2013).

    Article  Google Scholar 

  15. Dean, C. R. et al. Multicomponent fractional quantum Hall effect in graphene. Nature Phys. 7, 693–696 (2011).

    Article  ADS  Google Scholar 

  16. Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).

    Article  ADS  Google Scholar 

  17. Sachs, B., Wehling, T. O., Katsnelson, M. I. & Lichtenstein, A. I. Adhesion and electronic structure of graphene on hexagonal boron nitride substrates. Phys. Rev. B 84, 195414 (2011).

    Article  ADS  Google Scholar 

  18. Xue, J. M. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nature Mater. 10, 282–285 (2011).

    Article  ADS  Google Scholar 

  19. Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nature Phys. 8, 382–386 (2012).

    Article  ADS  Google Scholar 

  20. Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    Article  ADS  Google Scholar 

  21. Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    Article  ADS  Google Scholar 

  22. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    Article  ADS  Google Scholar 

  23. Wallbank, J. R., Patel, A. A., Mucha-Kruczynski, M., Geim, A. K. & Falko, V. I. Generic miniband structure of graphene on a hexagonal substrate. Phys. Rev. B 87, 245408 (2013).

    Article  ADS  Google Scholar 

  24. Ponomarenko, L. A. et al. Tunable metal–insulator transition in double-layer graphene heterostructures. Nature Phys. 7, 958–961 (2011).

    Article  ADS  Google Scholar 

  25. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  ADS  Google Scholar 

  26. Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nature Mater. 11, 764–767 (2012).

    Article  ADS  Google Scholar 

  27. Lee, C. et al. Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010).

    Article  ADS  Google Scholar 

  28. Pittenger, B. B., Erina, N. & Su, C. Quantitative mechanical property mapping at the nanoscale with PeakForce QNM (Bruker, 2012); http://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/SurfaceAnalysis/AFM/ApplicationNotes/AN128-RevB0-Quantitative_Mechanical_Property_Mapping_at_the_Nanoscale_with_PeakForceQNM-AppNote.pdf

  29. Derjaguin, B. V., Muller, V. M. & Toporov, Y. P. Effect of contact deformation on adhesion of particles. J. Colloid Interf. Sci. 53, 314–326 (1975).

    Article  ADS  Google Scholar 

  30. Tamayo, J. & Garcia, R. Effects of elastic and inelastic interactions on phase contrast images in tapping-mode scanning force microscopy. Appl. Phys. Lett. 71, 2394–2396 (1997).

    Article  ADS  Google Scholar 

  31. Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nature Phys. 6, 30–33 (2010).

    Article  ADS  Google Scholar 

  32. Guinea, F., Geim, A. K., Katsnelson, M. I. & Novoselov, K. S. Generating quantizing pseudomagnetic fields by bending graphene ribbons. Phys. Rev. B 81, 035408 (2010).

    Article  ADS  Google Scholar 

  33. Eckmann, A. et al. Raman fingerprint of aligned graphene/h-BN superlattices. Nano Lett. 13, 5242–5246 (2013).

    Article  ADS  Google Scholar 

  34. Mohiuddin, T. M. G. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 79, 205433 (2009).

    Article  ADS  Google Scholar 

  35. Song, J. C. W., Shytov, A. V. & Levitov, L. S. Engineering interaction effects and gap opening in graphene superlattices. Phys. Rev. Lett. 111, 266801 (2012).

    Article  ADS  Google Scholar 

  36. Low, T., Guinea, F. & Katsnelson, M. I. Gaps tunable by electrostatic gates in strained graphene. Phys. Rev. B 83, 195436 (2011).

    Article  ADS  Google Scholar 

  37. Zakharchenko, K. V., Katsnelson,, M. I. & Fasolino, A. Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys. Rev. Lett. 102, 046808 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council, Graphene Flagship, Engineering and Physical Sciences Research Council (UK), the Royal Society, US Office of Naval Research, US Air Force Office of Scientific Research, US Army Research Office, the MOST of China (No. 2013CBA01600) and the Körber Foundation. We are grateful to L. Levitov for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.R.W. prepared the samples and did the majority of AFM and Raman experiments. L.B. and A.E. contributed to AFM and Raman experiments. R.S.M., J.C.L., H.M.G. and X.L. did the STM experiments. G.L.Y. and L.A.P. did the transport experiments. Y.C., R.V.G., A.V.K. and J.P. produced experimental samples. M.I.K. and Y.N.G. produced the theoretical analysis. K.W. and T.T. provided hBN. C.C. coordinated and analysed the Raman experiments. H.-J.G. coordinated and analyzed the STM experiments. A.K.G. and K.S.N. initiated and coordinated the work, participated in the experiments, analysed data, and wrote the manuscript.

Corresponding author

Correspondence to K. S. Novoselov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 998 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woods, C., Britnell, L., Eckmann, A. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nature Phys 10, 451–456 (2014). https://doi.org/10.1038/nphys2954

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2954

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing