Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Piezoresistive heat engine and refrigerator

Abstract

Heat engines provide most of our mechanical power and are essential for transportation on the macroscopic scale. However, although significant progress has been made in the miniaturization of electrostatic engines, it has proved difficult to reduce the size of liquid- or gas-driven heat engines below 107 μm3. Here we demonstrate that a crystalline silicon structure operates as a cyclic piezoresistive heat engine when it is driven by a sufficiently high d.c. current. A 0.34 μm3 engine beam draws heat from the d.c. current using the piezoresistive effect and converts it into mechanical work by expansion and contraction at different temperatures. This mechanical power drives a silicon resonator of 1.1×103 μm3 into sustained oscillation. Even below the oscillation threshold the engine beam continues to amplify the resonator’s Brownian motion. When its thermodynamic cycle is inverted, the structure is shown to reduce these thermal fluctuations, therefore operating as a refrigerator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Micrograph, schematics, measurement circuit and operation mechanism of the piezoresistive heat engine and refrigerator.
Figure 2: Heat engine output signal.
Figure 3: Voltage spectral density 〈vω2〉 for different values of Id.c.
Figure 4: Measurements and fits to confirm the operation mechanism proposed in Fig. 1d.
Figure 5: Diagrams showing the heat flow and operation modes of the engine beam.

Similar content being viewed by others

References

  1. Epstein, A. H. Millimeter-scale, micro-electro-mechanical systems gas turbine engines. J. Eng. Gas Turbines Power 126, 205–226 (2004).

    Article  Google Scholar 

  2. Jacobson, S. A. & Epstein, A. H. Int. Symp. Micro-Mech. Eng. (ISMME) pK18 (2003).

  3. Spadaccini, C. M. & Waitz, I. A. Comprehensive Microsystems Ch. 3.15 (Elsevier, 2008).

    Google Scholar 

  4. Peterson, R. B. Size limits for regenerative heat engines. Nanoscale Microscale Thermophys. Eng. 2, 121–131 (1998).

    Article  Google Scholar 

  5. Wilfinger, R. J., Bardell, P. H. & Chhabra, D. S. The resonistor: A frequency selective device utilizing the mechanical resonance of a silicon substrate. IBM J. Res. Dev. 12, 113–117 (1968).

    Article  Google Scholar 

  6. Elwenspoek, M. et al. Transduction mechanisms and their applications in micromechanical devices. Proc. IEEE MEMS 126–132 (1989).

  7. Lammerink, T., Elwenspoek, M. & Fluitman, J. Frequency dependence of thermal excitation of micromechanical resonators. Sens. Actuat. A 25–27, 685–689 (1991).

    Article  Google Scholar 

  8. Guckel, H. et al. Thermo-magnetic metal flexure actuators. IEEE Solid-State Sens. Actuat. Workshop 5, 73–75 (1992).

    Google Scholar 

  9. Reichenbach, R. B., Zalalutdinov, M., Parpia, J. M. & Craighead, H. G. RF MEMS oscillator with integrated resistive transduction. IEEE Elect. Dev. L. 27, 805–807 (2006).

    Article  ADS  Google Scholar 

  10. Seo, J. H. & Brand, O. High Q-factor in-plane-mode resonant microsensor platform for gaseous/liquid environment. J. MEMS 17, 483–493 (2008).

    Article  Google Scholar 

  11. Cohadon, P., Heidmann, A. & Pinard, M. Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174–3177 (1999).

    Article  ADS  Google Scholar 

  12. Metzger, C. H. & Karrai, K. Cavity cooling of a microlever. Nature 432, 1002–1005 (2004).

    Article  ADS  Google Scholar 

  13. Arcizet, O., Cohadon, P-F., Briant, T., Pinard, M. & Heidmann, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006).

    Article  ADS  Google Scholar 

  14. Kleckner, D. & Bouwmeester, D. Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75–78 (2006).

    Article  ADS  Google Scholar 

  15. Schliesser, A., Del’Haye, P., Nooshi, N., Vahala, K. J. & Kippenberg, T. J. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006).

    Article  ADS  Google Scholar 

  16. Brown, K. R. et al. Passive cooling of a micromechanical oscillator with a resonant electric circuit. Phys. Rev. Lett. 99, 137205 (2007).

    Article  ADS  Google Scholar 

  17. Metzger, C., Favero, I., Ortlieb, A. & Karrai, K. Optical self cooling of a deformable Fabry-Perot cavity in the classical limit. Phys. Rev. B 78, 035309 (2008).

    Article  ADS  Google Scholar 

  18. Teufel, J., Donner, T., Castellanos-Beltran, M. A., Harlow, J. & Lehnert, W. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nature Nanotech. 4, 820–823 (2009).

    Article  ADS  Google Scholar 

  19. Feynman, R. P., Leighton, R. B. & Sands, M. The Feynman Lectures on Physics Vol. I, Ch. 46 (Addison-Wesley, 1963).

    MATH  Google Scholar 

  20. Spadaccini, C. et al. Proc. ASME/IGTI Turbo Expo GT–2002–30082 (2002).

  21. Köser, H. & Lang, J. Modelling a high power density MEMS magnetic induction machine. Proc. MSM Nanotech. (2001).

  22. Fennimore, A. M. et al. Rotational actuators based on carbon nanotubes. Nature 424, 408–410 (2003).

    Article  ADS  Google Scholar 

  23. Fan, D. L., Zhu, F. Q., Cammarata, R. C. & Chien, C. L. Controllable high-speed rotation of nanowires. Phys. Rev. Lett. 94, 247208 (2005).

    Article  ADS  Google Scholar 

  24. Ayari, A. et al. Self-oscillations in field emission nanowire mechanical resonators: A nanometric dc–ac conversion. Nano Lett. 7, 2252–2257 (2007).

    Article  ADS  Google Scholar 

  25. Weldon, J. A., Alemán, B., Sussman, A., Gannett, W. & Zettl, A. K. Sustained mechanical self-oscillations in carbon nanotubes. Nano Lett. 10, 1728–1733 (2010).

    Article  ADS  Google Scholar 

  26. Ebefors, T. & Stemme, G. The MEMS Handbook: MEMS Applications (CRC Press, 2006) (Ch. Microrobotics).

    Google Scholar 

  27. Burg, T. P. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066–1069 (2007).

    Article  ADS  Google Scholar 

  28. Bullis, W. M., Brewer, F. H., Kolstad, C. D. & Swartzendruber, L. J. Temperature coefficient of resistivity of silicon and germanium near room temperature. Solid-State Electron. 11, 639–646 (1968).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. J. M. Ruigrok, C. S. Vaucher, K. Reimann, R. Woltjer and E. P. A. M. Bakkers for discussions and suggestions and thank J. v. Wingerden for his assistance with the scanning electron microscope measurements.

Author information

Authors and Affiliations

Authors

Contributions

K.L.P., P.G.S., J.T.M.v.B. and M.J.G. invented and designed the device. P.G.S., K.L.P., M.J.G. and C.v.d.A. carried out the experiments. P.G.S. developed the theory, analysed the experiments and wrote the Article. J.T.M.v.B., G.E.J.K. and G.J.A.M.B. developed the process technology and manufactured the device.

Corresponding author

Correspondence to P. G. Steeneken.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 314 kb)

Supplementary Movie

Supplementary Movie 1 (MOV 290 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steeneken, P., Le Phan, K., Goossens, M. et al. Piezoresistive heat engine and refrigerator. Nature Phys 7, 354–359 (2011). https://doi.org/10.1038/nphys1871

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1871

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing