Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

All-optical coherent control of vacuum Rabi oscillations

Abstract

When an atom strongly couples to a cavity, the two systems can coherently exchange a single quantum excitation through the process of vacuum Rabi oscillation. Controlling this process enables precise synthesis of non-classical light, which plays a central role in quantum information and measurement. Although this control has been realized in microwave-frequency devices, it has been difficult to achieve at optical frequencies, which are essential for quantum communication and metrology. Here, we demonstrate coherent control of vacuum Rabi oscillation in an optical frequency device. We use a photonic molecule composed of two coupled nanocavities to simultaneously achieve strong coupling and a cavity-enhanced a.c. Stark shift. The Stark shift tunes a single quantum dot onto resonance with the photonic molecule on picosecond timescales, creating fast coherent transfer of energy between an atomic and photonic excitation. These results enable ultrafast control of light–matter quantum interactions in a nanophotonic device platform.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device design and experimental set-up.
Figure 2: Characterization of photonic molecule modes.
Figure 3: Stark shift-mediated energy transfer.
Figure 4: Rabi oscillations.
Figure 5: Coherent control of polariton energy transfer.

Similar content being viewed by others

References

  1. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  Google Scholar 

  2. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  3. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    Article  ADS  Google Scholar 

  4. Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nature Phys. 4, 859–863 (2008).

    Article  ADS  Google Scholar 

  5. Reinhard, A. et al. Strongly correlated photons on a chip. Nature Photon. 6, 93–96 (2012).

    Article  ADS  Google Scholar 

  6. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nature Photon. 5, 222–229 (2011).

    Article  ADS  Google Scholar 

  7. Gehr, R. et al. Cavity-based single atom preparation and high-fidelity hyperfine state readout. Phys. Rev. Lett. 104, 203602 (2010).

    Article  ADS  Google Scholar 

  8. Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article  ADS  Google Scholar 

  9. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  10. Englund, D. et al. Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007).

    Article  ADS  Google Scholar 

  11. Bochmann, J. et al. Fast excitation and photon emission of a single-atom-cavity system. Phys. Rev. Lett. 101, 223601 (2008).

    Article  ADS  Google Scholar 

  12. Englund, D. et al. Ultrafast photon–photon interaction in a strongly coupled quantum dot–cavity system. Phys. Rev. Lett. 108, 093604 (2012).

    Article  ADS  Google Scholar 

  13. Bose, R., Sridharan, D., Kim, H., Solomon, G. S. & Waks, E. Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Phys. Rev. Lett. 108, 227402 (2012).

    Article  ADS  Google Scholar 

  14. Volz, T. et al. Ultrafast all-optical switching by single photons. Nature Photon. 6, 605–609 (2012).

    Article  ADS  Google Scholar 

  15. Loo, V. et al. Optical nonlinearity for few-photon pulses on a quantum dot–pillar cavity device. Phys. Rev. Lett. 109, 166806 (2012).

    Article  ADS  Google Scholar 

  16. Boozer, A. D., Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007).

    Article  ADS  Google Scholar 

  17. Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

    Article  ADS  Google Scholar 

  18. Kim, H., Bose, R., Shen, T. C., Solomon, G. S. & Waks, E. A quantum logic gate between a solid-state quantum bit and a photon. Nature Photon. 7, 373–377 (2013).

    Article  ADS  Google Scholar 

  19. Reiserer, A., Ritter, S. & Rempe, G. Nondestructive detection of an optical photon. Science 342, 1349–1351 (2013).

    Article  ADS  Google Scholar 

  20. Hofheinz, M. et al. Generation of Fock states in a superconducting quantum circuit. Nature 454, 310–314 (2008).

    Article  ADS  Google Scholar 

  21. Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009).

    Article  ADS  Google Scholar 

  22. Atlasov, K. A., Rudra, A., Dwir, B. & Kapon, E. Large mode splitting and lasing in optimally coupled photonic-crystal microcavities. Opt. Express 19, 2619–2625 (2011).

    Article  ADS  Google Scholar 

  23. Bayer, M. et al. Optical modes in photonic molecules. Phys. Rev. Lett. 81, 2582–2585 (1998).

    Article  ADS  Google Scholar 

  24. Bose, R., Cai, T., Solomon, G. S. & Waks, E. All-optical tuning of a quantum dot in a coupled cavity system. Appl. Phys. Lett. 100, 231107 (2012).

    Article  ADS  Google Scholar 

  25. Dousse, A. et al. Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010).

    Article  ADS  Google Scholar 

  26. Majumdar, A., Rundquist, A., Bajcsy, M. & Vučković, J. Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule. Phys. Rev. B 86, 045315 (2012).

    Article  ADS  Google Scholar 

  27. Bose, R., Sridharan, D., Solomon, G. S. & Waks, E. Large optical Stark shifts in semiconductor quantum dots coupled to photonic crystal cavities. Appl. Phys. Lett. 98, 121109 (2011).

    Article  ADS  Google Scholar 

  28. Ates, S. et al. Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy. Nature Photon. 3, 724–728 (2009).

    Article  ADS  Google Scholar 

  29. Fluegel, B. et al. Femtosecond studies of coherent transients in semiconductors. Phys. Rev. Lett. 59, 2588–2591 (1987).

    Article  ADS  Google Scholar 

  30. Sokoloff, J. P. et al. Transient oscillations in the vicinity of excitons and in the band of semiconductors. Phys. Rev. B 38, 7615–7621 (1988).

    Article  ADS  Google Scholar 

  31. Lange, C. et al. Ultrafast nonlinear optical response of photoexcited Ge/SiGe quantum wells: evidence for a femtosecond transient population inversion. Phys. Rev. B 79, 201306 (2009).

    Article  ADS  Google Scholar 

  32. Guenther, T. et al. Coherent nonlinear optical response of single quantum dots studied by ultrafast near-field spectroscopy. Phys. Rev. Lett. 89, 057401 (2002).

    Article  ADS  Google Scholar 

  33. Tan, S. M. A computational toolbox for quantum and atomic optics. J. Opt. B 1, 424–432 (1999).

    Article  ADS  Google Scholar 

  34. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

    Article  ADS  Google Scholar 

  35. Song, B.-S., Noda, S., Asano, T. & Akahane, Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nature Mater. 4, 207–210 (2005).

    Article  ADS  Google Scholar 

  36. Ota, Y. et al. Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity. Appl. Phys. Lett. 94, 033102 (2009).

    Article  ADS  Google Scholar 

  37. Arakawa, Y., Iwamoto, S., Nomura, M., Tandaechanurat, A. & Ota, Y. Cavity quantum electrodynamics and lasing oscillation in single quantum dot–photonic crystal nanocavity coupled systems. IEEE J. Sel. Top. Quantum Electron. 18, 1818–1829 (2012).

    Article  ADS  Google Scholar 

  38. Akahane, Y., Asano, T., Song, B.-S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Army Research Office Multidisciplinary University Research Initiative on Hybrid Quantum Interactions (grant no. W911NF09104), the Physics Frontier Center at the Joint Quantum Institute, and the Office of Naval Research Applied Electromagnetics Center. E.W. acknowledges support from the National Science Foundation Faculty Early Career Development (CAREER) award (grant no. ECCS. 0846494).

Author information

Authors and Affiliations

Authors

Contributions

E.W. conceived and designed the experiment. R.B. and T.C. designed and fabricated the device, conducted experiments and carried out analysis. K.R.C., E.W., T.C. and R.B. performed theoretical simulations. R.B. and E.W. wrote the manuscript, with input from all authors. G.S.S. grew the quantum-dot wafer. E.W. supervised the work.

Corresponding author

Correspondence to Edo Waks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1052 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, R., Cai, T., Choudhury, K. et al. All-optical coherent control of vacuum Rabi oscillations. Nature Photon 8, 858–864 (2014). https://doi.org/10.1038/nphoton.2014.224

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.224

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing