Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Simultaneous measurement of nanoscale electric and magnetic optical fields

A Corrigendum to this article was published on 28 February 2014

This article has been updated

Abstract

Control of light–matter interactions at the nanoscale has advanced fields such as quantum optics1, photovoltaics2 and telecommunications3. These advances are driven by an improved understanding of the nanoscale behaviour of light, enabled by direct observations of the local electric fields near photonic nanostructures4,5,6. With the advent of metamaterials that respond to the magnetic component of light7,8, schemes have been developed to measure the nanoscale magnetic field9,10,11,12. However, these structures interact not only with the magnetic field, but also with the electric field of light. Here, we demonstrate the essential simultaneous detection of both electric and magnetic fields with subwavelength resolution. By explaining our measurements through reciprocal considerations, we create a route towards designing probes sensitive to specific desired combinations of electric and magnetic field components. Simultaneous access to nanoscale electric and magnetic fields will pave the way for new designs of optical nanostructures and metamaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NSOM measurements of a PhCW.
Figure 2: Slices in the x–y plane at height h above the surface.
Figure 3: Probe size dependent sensitivities.

Similar content being viewed by others

Change history

  • 03 February 2014

    The reference section in the print version of this Letter contained the following errors: For ref. 3, the volume number should have been 4 rather than 3. For ref. 17, "15, 1289-1295" should have been http://dx.doi.org/10.1126/science.1232009. For ref. 30, the volume number should have been 326 rather than 23. The online HTML and PDF versions of the Letter do not contain these errors.

References

  1. O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  2. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    Article  ADS  Google Scholar 

  3. Liu, X., Osgood, R. M., Vlasov, Y. A. & Green, W. M. J. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nature Photon. 4, 557–560 (2010).

    Article  ADS  Google Scholar 

  4. López-Tejeira, F. et al. Efficient unidirectional nanoslit couplers for surface plasmons. Nature Phys. 3, 324–328 (2007).

    Article  ADS  Google Scholar 

  5. Dorfmüller, J. et al. Near-field dynamics of optical Yagi-Uda nanoantennas. Nano Lett. 11, 2819–2824 (2011).

    Article  ADS  Google Scholar 

  6. Balistreri, M. L. M., Korterik, J. P., Kuipers, L. & van Hulst, N. F. Local observations of phase singularities in optical fields in waveguide structures. Phys. Rev. Lett. 85, 294–297 (2000).

    Article  ADS  Google Scholar 

  7. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    Article  ADS  Google Scholar 

  8. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).

    Article  ADS  Google Scholar 

  9. Kihm, H. W. et al. Bethe-hole polarization analyser for the magnetic vector of light. Nature Commun. 2, 451 (2011).

    Article  ADS  Google Scholar 

  10. Taminiau, T. H., Karaveli, S., van Hulst, N. F. & Zia, R. Quantifying the magnetic nature of light emission. Nature Commun. 3, 979 (2012).

    Article  ADS  Google Scholar 

  11. Olmon, R. L. et al. Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer. Phys. Rev. Lett. 105, 167403 (2010).

    Article  ADS  Google Scholar 

  12. Devaux, E. et al. Local detection of the optical magnetic field in the near zone of dielectric samples. Phys. Rev. B. 62, 10504–10514 (2000).

    Article  ADS  Google Scholar 

  13. Betzig, E. & Chichester, R. J. Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425 (1993).

    Article  ADS  Google Scholar 

  14. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J. Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

    Article  ADS  Google Scholar 

  15. Schnell, M. et al. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nature Photon. 3, 287–291 (2009).

    Article  ADS  Google Scholar 

  16. Burresi, M. et al. Observation of polarization singularities at the nanoscale. Phys. Rev. Lett. 102, 033902 (2009).

    Article  ADS  Google Scholar 

  17. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science http://dx.doi.org/10.1126/science.1232009 (2013).

  18. Ergin, T., Stenger, N., Brenner, P., Pendry, J. B. & Wegener, M. Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337–339 (2010).

    Article  ADS  Google Scholar 

  19. Ren, M., Plum, E., Xu, J. & Zheludev, N. I. Giant nonlinear optical activity in a plasmonic metamaterial. Nature Commun. 3, 833 (2012).

    Article  ADS  Google Scholar 

  20. Soukoulis, M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photon. 5, 523–530 (2011).

    Article  ADS  Google Scholar 

  21. Van Labeke, D. & Barchiesi, D. Probes for scanning tunneling optical microscopy: a theoretical comparison. J. Opt. Soc. Am. A 10, 2193–2201 (1993).

    Article  ADS  Google Scholar 

  22. Porto, J. A., Carminati, R. & Greffet, J. J. Theory of electromagnetic field imaging and spectroscopy in scanning near-field optical microscopy. J. Appl. Phys. 88, 4845–4850 (2000).

    Article  ADS  Google Scholar 

  23. Esslinger, M. & Vogelgesang, R. Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes. ACS Nano 6, 8173–8182 (2012).

    Article  Google Scholar 

  24. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. in Photonic Crystals: Molding the Flow of Light Ch. 7 (Princeton Univ. Press, 2011).

    Book  Google Scholar 

  25. Johnson, S. G. & Joannopoulos, J. D. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8, 173–190 (2001).

    Article  ADS  Google Scholar 

  26. Engelen, R. J. P., Mori, D., Baba, T. & Kuipers, L. Subwavelength structure of the evanescent field of an optical Bloch wave. Phys. Rev. Lett. 102, 023902 (2009).

    Article  ADS  Google Scholar 

  27. Kihm, H. W. et al. Optical magnetic field mapping using a subwavelength aperture. Opt. Express 21, 5625–5633 (2013).

    Article  ADS  Google Scholar 

  28. Rotenberg, N. et al. Plasmon scattering from single subwavelength holes. Phys. Rev. Lett. 108, 127402 (2012).

    Article  ADS  Google Scholar 

  29. Yi., J. M. et al. Diffraction regimes of single holes. Phys. Rev. Lett. 109, 023901 (2012).

    Article  ADS  Google Scholar 

  30. Burresi, M. et al. Probing the magnetic field of light at optical frequencies. Science 326, 550–553 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank M. P. van Exter and J. J. Greffet for useful discussions and H. Schoenmaker for fabricating near-field probes. This work is supported by NanoNextNL of the Government of the Netherlands and 130 partners, as well as part of the research programme of the Stichting voor Fundamenteel Onderzoek der Materie (FOM), which is financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). Part of this work was funded by the project ‘SPANGL4Q’, which has financial support from the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission (FET—Open grant no. FP7-284743).

Author information

Authors and Affiliations

Authors

Contributions

B.F. and L.K. designed the experiment. B.F. conducted the experiment. N.R. and B.F. analysed the data. D.M.B. fabricated the sample. D.M.B. and B.F. performed simulations. The manuscript was prepared with contributions from all authors.

Corresponding authors

Correspondence to B. le Feber or L. Kuipers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 632 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

le Feber, B., Rotenberg, N., Beggs, D. et al. Simultaneous measurement of nanoscale electric and magnetic optical fields. Nature Photon 8, 43–46 (2014). https://doi.org/10.1038/nphoton.2013.323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.323

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing