Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chiral spin torque at magnetic domain walls

Abstract

Spin-polarized currents provide a powerful means of manipulating the magnetization of nanodevices, and give rise to spin transfer torques that can drive magnetic domain walls along nanowires. In ultrathin magnetic wires, domain walls are found to move in the opposite direction to that expected from bulk spin transfer torques, and also at much higher speeds. Here we show that this is due to two intertwined phenomena, both derived from spin–orbit interactions. By measuring the influence of magnetic fields on current-driven domain-wall motion in perpendicularly magnetized Co/Ni/Co trilayers, we find an internal effective magnetic field acting on each domain wall, the direction of which alternates between successive domain walls. This chiral effective field arises from a Dzyaloshinskii–Moriya interaction at the Co/Pt interfaces and, in concert with spin Hall currents, drives the domain walls in lock-step along the nanowire. Elucidating the mechanism for the manipulation of domain walls in ultrathin magnetic films will enable the development of new families of spintronic devices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current-driven domain-wall motion in the presence of a magnetic field.
Figure 2: Chiral internal longitudinal field.
Figure 3: One-dimensional model of domain-wall dynamics.
Figure 4: Role of underlayer.
Figure 5: Symmetry breaking at top and bottom interfaces.

Similar content being viewed by others

References

  1. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  CAS  Google Scholar 

  2. Berger, L. Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films. J. Appl. Phys. 55, 1954–1956 (1984).

    Article  CAS  Google Scholar 

  3. Berger, L. Possible existence of a Josephson effect in ferromagnets. Phys. Rev. B 33, 1572–1578 (1986).

    Article  CAS  Google Scholar 

  4. Slonczewski, J. Current driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  CAS  Google Scholar 

  5. Kim, K-J. et al. Electric control of multiple domain walls in Pt/Co/Pt nanotrack with perpendicular magnetic anisotropy. Appl. Phys. Express 3, 083001 (2010).

    Article  Google Scholar 

  6. Miron, I. M. et al. Fast current-induced domain-wall motion controlled by the Rashba effect. Nature Mater. 10, 419–423 (2011).

    Article  CAS  Google Scholar 

  7. Ryu, K-S., Thomas, L., Yang, S-H. & Parkin, S. S. P. Current induced tilting of domain walls in high velocity motion along perpendicularly magnetized micron-sized Co/Ni/Co racetracks. Appl. Phys. Express 5, 093006 (2012).

    Article  Google Scholar 

  8. Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Mater. 9, 230–234 (2010).

    Article  Google Scholar 

  9. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  10. Kim, K-W., Seo, S-M., Ryu, J., Lee, K-J. & Lee, H-W. Magnetization dynamics induced by in-plane currents in ultrathin magnetic nanostructures with Rashba spin–orbit coupling. Phys. Rev. B 85, 180404 (2012).

    Article  Google Scholar 

  11. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Article  Google Scholar 

  12. Seo, S-M., Kim, K-W., Ryu, J., Lee, H-W. & Lee, K-J. Current-induced motion of a transverse magnetic domain wall in the presence of spin Hall effect. Appl. Phys. Lett. 101, 022405 (2012).

    Article  Google Scholar 

  13. Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Preprint at http://arXiv.org/abs/1301.3573 (2013).

  14. Haazen, P. P. J. et al. Domain wall motion governed by the spin Hall effect. Nature Mater. 12, 299–303 (2013).

    Article  CAS  Google Scholar 

  15. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Article  CAS  Google Scholar 

  16. D'yakonov, M. I. Spin Hall effect. Int. J. Mod. Phys. B 23, 2556–2565 (2009).

    Article  CAS  Google Scholar 

  17. Bychkov, Y. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. J. Exp. Theor. Phys. Lett. 39, 78–81 (1984).

    Google Scholar 

  18. Manchon, A. & Zhang, S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B 78, 212405 (2008).

    Article  Google Scholar 

  19. Manchon, A. & Zhang, S. Theory of spin torque due to spin–orbit coupling. Phys. Rev. B 79, 094422 (2009).

    Article  Google Scholar 

  20. Parkin, S. S. P. et al. Magnetically engineered spintronic sensors and memory. Proc. IEEE 91, 661–680 (2003).

    Article  CAS  Google Scholar 

  21. Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nature Mater. 12, 240–245 (2013).

    Article  CAS  Google Scholar 

  22. Dzyaloshinskii, I. E. Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259–1272 (1957).

    Google Scholar 

  23. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  CAS  Google Scholar 

  24. Dzyaloshinskii, I. E. Theory of helicoidal structures in antiferromagnets. 1. Nonmetals. Sov. Phys. JETP 19, 960–971 (1964).

    Google Scholar 

  25. Bogdanov, A. N. & Rößler, U. K. Chiral symmetry breaking in magnetic thin films and multilayers. Phys. Rev. Lett. 87, 037203 (2001).

    Article  CAS  Google Scholar 

  26. Heide, M., Bihlmayer, G. & Blügel, S. Dzyaloshinskii–Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110). Phys. Rev. B 78, 140403 (2008).

    Article  Google Scholar 

  27. Meckler, S. et al. Real-space observation of a right-rotating inhomogeneous cycloidal spin spiral by spin-polarized scanning tunneling microscopy in a triple axes vector magnet. Phys. Rev. Lett. 103, 157201 (2009).

    Article  CAS  Google Scholar 

  28. Vedmedenko, E. Y., Udvardi, L., Weinberger, P. & Wiesendanger, R. Chiral magnetic ordering in two-dimensional ferromagnets with competing Dzyaloshinsky–Moriya interactions. Phys. Rev. B 75, 104431 (2007).

    Article  Google Scholar 

  29. Khvalkovskiy, A. V. et al. Matching domain wall configuration and spin–orbit torques for very efficient domain-wall motion. Phys. Rev. B 87, 020402(R) (2013).

    Article  Google Scholar 

  30. Thiaville, A., Rohart, S., Jue, E., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012).

    Article  Google Scholar 

  31. Malozemoff, A. P. & Slonczewski, J. C. Magnetic Domain Walls in Bubble Material (Academic, 1979).

    Google Scholar 

  32. Thiaville, A., Nakatani, Y., Miltat, J. & Suzuki, Y. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 69, 990–996 (2005).

    Article  CAS  Google Scholar 

  33. Thomas, L. et al. Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length. Nature 443, 197–200 (2006).

    Article  CAS  Google Scholar 

  34. Hubert, A. & Schäfer, R. Magnetic Domains: The Analysis of Magnetic Microstructures (Springer, 1998).

    Google Scholar 

  35. Koyama, T. et al. Magnetic field insensitivity of magnetic domain wall velocity induced by electrical current in Co/Ni nanowire. Appl. Phys. Lett. 98, 192509 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Manchon for discussions. K-S.R. acknowledges financial support from the Max Planck Institute for Chemical Physics of Solids.

Author information

Authors and Affiliations

Authors

Contributions

S.P. initiated and conceived of the experiments. K-S.R. performed the experiments. S-H.Y. prepared the films and fabricated the devices. L.T. performed the data analysis and modelling. S.P. and L.T. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Luc Thomas or Stuart Parkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1017 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, KS., Thomas, L., Yang, SH. et al. Chiral spin torque at magnetic domain walls. Nature Nanotech 8, 527–533 (2013). https://doi.org/10.1038/nnano.2013.102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing