Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The processing and heterostructuring of silk with light

Abstract

Spider silk is a tough, elastic and lightweight biomaterial, although there is a lack of tools available for non-invasive processing of silk structures. Here we show that nonlinear multiphoton interactions of silk with few-cycle femtosecond pulses allow the processing and heterostructuring of the material in ambient air. Two qualitatively different responses, bulging by multiphoton absorption and plasma-assisted ablation, are observed for low- and high-peak intensities, respectively. Plasma ablation allows us to make localized nanocuts, microrods, nanotips and periodic patterns with minimal damage while preserving molecular structure. The bulging regime facilitates confined bending and microwelding of silk with materials such as metal, glass and Kevlar with strengths comparable to pristine silk. Moreover, analysis of Raman bands of microwelded joints reveals that the polypeptide backbone remains intact while perturbing its weak hydrogen bonds. Using this approach, we fabricate silk-based functional topological microstructures, such as Mobiüs strips, chiral helices and silk-based sensors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up and mechanisms of laser–silk interaction.
Figure 2: Bulging and ablation responses of the silk as a function of the laser fluence.
Figure 3: Localized machining of silk fibres.
Figure 4: Controlled microbending of silk fibres.
Figure 5: Fabrication and characterization of microwelded silk heterostructures.
Figure 6: Functional silk-based topological microstructures.

Similar content being viewed by others

References

  1. Vollrath, F. & Knight, D. P. Liquid crystalline spinning of spider silk. Nature 410, 541–548 (2001).

    Article  CAS  Google Scholar 

  2. Omenetto, F. G. & Kaplan, D. L. New opportunities for an ancient material. Science 329, 528–531 (2010).

    Article  CAS  Google Scholar 

  3. Vollrath, F. & Porter, D. Spider silk as archetypal protein elastomer. Soft Matter 2, 377–385 (2006).

    Article  CAS  Google Scholar 

  4. Romer, L. & Scheibel, T. The elaborate structure of spider silk: structure and function of a natural high performance fiber. Prion 4, 154–161 (2008).

    Article  Google Scholar 

  5. Zheng, Y. et al. Directional water collection on wetted spider silk. Nature 463, 640–643 (2010).

    Article  CAS  Google Scholar 

  6. Perrone, G. S. et al. The use of silk-based devices for fracture fixation. Nat. Commun. 5, 3385–3394 (2014).

    Article  Google Scholar 

  7. Chun, K. Y. et al. Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk. Nat. Commun. 5, 3322–3331 (2014).

    Article  Google Scholar 

  8. Lee, S. M. et al. Greatly increased toughness of infiltrated spider silk. Science 324, 488–492 (2009).

    Article  CAS  Google Scholar 

  9. Steven, E. et al. Carbon nanotubes on a spider silk scaffold. Nat. Commun. 4, 2435–2443 (2013).

    Article  Google Scholar 

  10. Samal, S. K. et al. Biomimetic magnetic silk scaffolds. ACS Appl. Mater. Interfaces 7, 6282–6292 (2015).

    Article  CAS  Google Scholar 

  11. Simmons, A. H., Michal, C. A. & Jelinski, L. W. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271, 84–87 (1996).

    Article  CAS  Google Scholar 

  12. vanBeek, J. D., Hess, S., Vollrath, F. & Meier, B. H. The molecular structure of spider dragline silk: folding and orientation of protein backbone. Proc. Natl Acad. Sci. USA 99, 10266–10271 (2002).

    Article  CAS  Google Scholar 

  13. Keten, S. & Buehler, M. J. Atomistic model of the spider silk nanostructure. Appl. Phys. Lett. 96, 153701 (2010).

    Article  Google Scholar 

  14. Keten, S., Xu, Z., Ihle, B. & Buehler, M. J. Nano confinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nat. Mater. 9, 359–367 (2010).

    Article  CAS  Google Scholar 

  15. Sponner, A. et al. Composition and hierarchical organization of a spider silk. PLoS ONE 2, e998 (2007).

    Article  Google Scholar 

  16. Liu, Y., Shao, Z. & Vollrath, F. Relationships between supercontraction and mechanical properties of spider silk. Nat. Mater. 4, 901–905 (2005).

    Article  CAS  Google Scholar 

  17. Zeplin, P. H. et al. Spider silk coatings as a bioshield to reduce periprosthetic fibrous capsule formation. Adv. Funct. Mater. 24, 2658–2666 (2014).

    Article  CAS  Google Scholar 

  18. Brenckle, M. A. et al. Protein-protein nanoimprinting of silk fibroin films. Adv. Mater. 25, 2409–2414 (2013).

    Article  CAS  Google Scholar 

  19. Cebe, P. et al. Beating the heat—fast scanning melts silk beta-sheet crystals. Sci. Rep. 3, 1130 (2013).

    Article  Google Scholar 

  20. Applegate, M. B. et al. Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds. Proc. Natl Acad. Sci. USA 112, 12052–12057 (2015).

    Article  CAS  Google Scholar 

  21. Moore, A., Koch, M., Mueller, K. & Stuke, M. Precise laser ablation processing of black widow spider silk. Appl. Phys. A 77, 353–357 (2003).

    Article  CAS  Google Scholar 

  22. Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photon. 2, 219–225 (2008).

    Article  CAS  Google Scholar 

  23. Tirlapur, U. K. & König, K. Targeted transfection by femtosecond laser. Nature 418, 290–291 (2002).

    Article  CAS  Google Scholar 

  24. Sundaram, S. K. & Mazur, E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses materials. Nat. Mater. 1, 217–224 (2002).

    Article  CAS  Google Scholar 

  25. Uchugonova, A., König, K., Bueckle, R., Isemann, A. & Tempea, G. Targeted transfection of stem cells with sub-20 femtosecond laser pulses. Opt. Express 16, 9357–9364 (2008).

    Article  CAS  Google Scholar 

  26. Hanczyc, P., Samoc, M. & Norden, B. Multiphoton absorption in amyloid protein fibres. Nat. Photon. 7, 969–972 (2013).

    Article  CAS  Google Scholar 

  27. Applegate, M. B., Marelli, B., Kaplan, D. L. & Omenetto, F. G. Determination of multiphoton absorption of silk fibroin using the Z-scan technique. Opt. Exp. 21, 29637–29642 (2013).

    Article  Google Scholar 

  28. Lefèvre, T., Mercier, F. P., Dubé, J.-F. R. & Pézolet, M. Structure of silk by Raman spectromicroscopy: from spinning glands to the fiber. Biopolymers 97, 322–336 (2011).

    Article  Google Scholar 

  29. Sirichaisit, J., Young, R. J. & Vollrath, F. Molecular deformation in spider dragline silk subjected to stress. Polymer 41, 1223–1227 (2000).

    Article  CAS  Google Scholar 

  30. Shao, Z., Vollrath, F., Sirichaisit, J. & Young, R. J. Analysis of spider silk in native and supercontracted state using Raman spectroscopy. Polymer 40, 2493–2500 (1999).

    Article  CAS  Google Scholar 

  31. Kumar, B. & Singh, K. P. Fatigueless response of spider draglines in cyclic torsion facilitated by reversible molecular deformation. Appl. Phys. Lett. 105, 213705 (2014).

    Google Scholar 

  32. Kitagawa, T., Yabukia, K. & Young, R. J. An investigation into the relationship between processing, structure and properties for high-modulus PBO fibres. Part 1. Raman band shifts and broadening in tension and compression. Polymer 42, 2101–2112 (2001).

    Article  CAS  Google Scholar 

  33. Norte, R. A., Moura, J. P. & Gröblacher, S. Mechanical resonators for quantum optomechanics experiments at room temperature. Phys. Rev. Lett. 116, 147202 (2016).

    Article  CAS  Google Scholar 

  34. Reinhardt, C., Müller, C., Bourassa, A. & Sankey, J. C. Ultralow-noise SiN trampoline resonators for sensing and optomechanics. Phys. Rev. X 6, 021001 (2016).

    Google Scholar 

  35. Porter, D. & Vollrath, F. Silk as a biomimetic ideal for structural polymers. Adv. Mater. 21, 487–492 (2009).

    Article  CAS  Google Scholar 

  36. Altman, D. G. et al. Silk-based biomaterials. Biomaterials 24, 401–416 (2003).

    Article  CAS  Google Scholar 

  37. Qin, Z. et al. Structural optimization of 3D-printed synthetic spider webs for high strength. Nat. Commun. 6, 7038–7045 (2015).

    Article  Google Scholar 

  38. Buehler, M. J. & Yung, Y. C. Deformation and failure of protein materials in physiologically extreme conditions and disease. Nat. Mater. 8, 175–188 (2009).

    Article  CAS  Google Scholar 

  39. Cohen Stuart, M. A. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the central facilities of IISER Mohali for Raman spectra, SEM micrographs and optical absorption spectra. We thank R. Yadav for his help with confocal microscopy. K.P.S. acknowledges P. P. Singh and T. Pfeifer for many fruitful discussions. We acknowledge funding from DST, India and IISER Mohali.

Author information

Authors and Affiliations

Authors

Contributions

K.P.S. conceived the idea. M.S.S. and K.P.S. designed the research. K.P.S. and M.S.S. developed the full processing set-up, performed experiments, and analysed data including Raman analysis, pulling tests, welding silk to other materials, and multiphoton measurements. B.K. participated in an early version of the set-up with K.P.S. K.P.S. and M.S.S. wrote the manuscript.

Corresponding author

Correspondence to Kamal P. Singh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1978 kb)

Supplementary Information

Supplementary movie 1 (AVI 2896 kb)

Supplementary Information

Supplementary movie 2 (WMV 5392 kb)

Supplementary Information

Supplementary movie 3 (WMV 345 kb)

Supplementary Information

Supplementary movie 4 (WMV 1994 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidhu, M., Kumar, B. & Singh, K. The processing and heterostructuring of silk with light. Nature Mater 16, 938–945 (2017). https://doi.org/10.1038/nmat4942

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4942

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing