Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quasiparticle-mediated spin Hall effect in a superconductor

Subjects

Abstract

In some materials the competition between superconductivity and magnetism brings about a variety of unique phenomena such as the coexistence of superconductivity and magnetism in heavy-fermion superconductors1 or spin-triplet supercurrent in ferromagnetic Josephson junctions2,3,4. Recent observations of spin–charge separation in a lateral spin valve with a superconductor5,6 evidence that these remarkable properties are applicable to spintronics7, although there are still few works exploring this possibility. Here, we report the experimental observation of the quasiparticle-mediated spin Hall effect in a superconductor, NbN. This compound exhibits the inverse spin Hall (ISH) effect8 even below the superconducting transition temperature. Surprisingly, the ISH signal increases by more than 2,000 times compared with that in the normal state with a decrease of the injected spin current. The effect disappears when the distance between the voltage probes becomes larger than the charge imbalance length9,10, corroborating that the huge ISH signals measured are mediated by quasiparticles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic image of spin Hall measurement.
Figure 2: Experimental results of ISHE above TC.
Figure 3: ISHE below TC.
Figure 4: NbN length dependence of the observed signals.

Similar content being viewed by others

References

  1. Matsuda, Y. & Shimahara, H. Fulde–Ferrell–Larkin–Ovchinnikov state in heavy fermion superconductors. J. Phys. Soc. Jpn 76, 051005 (2007).

    Article  Google Scholar 

  2. Keizer, R. S. et al. A triplet supercurrent through the half-metallic ferromagnet CrO2 . Nature 439, 825–827 (2006).

    Article  CAS  Google Scholar 

  3. Khaire, T. S., Khasawneh, M. A., Pratt, W. P. Jr & Birge, N. O. Observation of spin-triplet superconductivity in Co-based Josephson junctions. Phys. Rev. Lett. 104, 137002 (2010).

    Article  Google Scholar 

  4. Robinson, J. W. A., Witt, J. D. S. & Blamire, M. G. Controlled injection of spin-triplet supercurrents into a strong ferromagnet. Science 329, 59–61 (2010).

    Article  CAS  Google Scholar 

  5. Hubler, F., Wolf, M. J., Beckmann, D. & von Lohneysen, H. Long-range spin-polarized quasiparticle transport in mesoscopic Al superconductors with a Zeeman splitting. Phys. Rev. Lett. 109, 207001 (2012).

    Article  CAS  Google Scholar 

  6. Quay, C. H. L., Chevallier, D., Bena, C. & Aprili, M. Spin imbalance and spin-charge separation in a mesoscopic superconductor. Nature Phys. 9, 84–88 (2013).

    Article  CAS  Google Scholar 

  7. Takahashi, S. & Maekawa, S. Spin Hall effect in superconductors. Jpn. J. Appl. Phys. 51, 010110 (2012).

    Article  Google Scholar 

  8. Takahashi, S. & Maekawa, S. Spin current in metals and superconductors. J. Phys. Soc. Jpn 77, 031009 (2008).

    Article  Google Scholar 

  9. Cadden-Zimansky, P. & Chandrasekhar, V. Nonlocal correlations in normal-metal superconducting systems. Phys. Rev. Lett. 97, 237003 (2006).

    Article  CAS  Google Scholar 

  10. Cadden-Zimansky, P., Jiang, Z. & Chandrasekhar, V. Charge imbalance, crossed Andreev reflection and elastic co-tunnelling in ferromagnet/superconductor/normal-metal structures. New J. Phys. 9, 116-1-24 (2007).

    Article  Google Scholar 

  11. Yamashita, T., Takahashi, S., Imamura, H. & Maekawa, S. Spin transport and relaxation in superconductors. Phys. Rev. B 65, 172509 (2002).

    Article  Google Scholar 

  12. Kontani, H., Goryo, J. & Hirashima, D. S. Intrinsic spin Hall effect in the s-wave superconducting state: Analysis of the Rashba model. Phys. Rev. Lett. 102, 086602 (2009).

    Article  CAS  Google Scholar 

  13. Takahashi, S. & Maekawa, S. Hall effect induced by a spin-polarized current in superconductors. Phys. Rev. Lett. 88, 116601 (1999).

    Article  Google Scholar 

  14. Hikino, S. & Yunoki, S. Anomalous enhancement of spin Hall conductivity in a superconductor/normal-metal junction. Phys. Rev. B 84, 020512 (2011).

    Article  Google Scholar 

  15. Tinkham, M. Introduction to Superconductivity 2nd edn (Dover, 2004).

    Google Scholar 

  16. Wakamura, T. et al. Spin injection into a superconductor with strong spin-orbit coupling. Phys. Rev. Lett. 112, 036602 (2014).

    Article  CAS  Google Scholar 

  17. Yang, H. et al. Extremely long quasiparticle spin lifetimes in superconducting aluminum using MgO tunnel spin injectors. Nature Mater. 9, 586–593 (2010).

    Article  CAS  Google Scholar 

  18. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    Article  CAS  Google Scholar 

  19. Kimura, T. et al. Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98, 156601 (2007).

    Article  CAS  Google Scholar 

  20. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  Google Scholar 

  21. Liu, L. Q. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  CAS  Google Scholar 

  22. Takahashi, S., Yamashita, T., Imamura, H. & Maekawa, S. Spin-relaxation and magnetoresistance in FM/SC/FM tunnel junctions. J. Magn. Magn. Mater. 240, 100–102 (2002).

    Article  CAS  Google Scholar 

  23. Niimi, Y. et al. Giant spin Hall effect induced by skew scattering from bismuth impurities inside thin film CuBi alloys. Phys. Rev. Lett. 109, 156602 (2012).

    Article  CAS  Google Scholar 

  24. Jedema, F. J. et al. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416, 713–716 (2002).

    Article  CAS  Google Scholar 

  25. Wakamura, T., Ohnishi, K., Niimi, Y. & Otani, Y. Large spin accumulation with long spin diffusion length in Cu/MgO/Permalloy lateral spin valves. Appl. Phys. Express 4, 063002 (2011).

    Article  Google Scholar 

  26. Shoji, A., Kiryu, S. & Kohjiro, S. Superconducting properties and normal-state resistivity of single-crystal NbN films prepared by a reactive rf-magnetron sputtering method. Appl. Phys. Lett. 60, 1624–1626 (1992).

    Article  CAS  Google Scholar 

  27. Akaike, H., Funai, T., Naito, N. & Fujimaki, A. Characterization of NbN tunnel junctions with radical-nitrided AlNx barriers. IEEE Trans. Appl. Supercond. 23, 1101306 (2013).

    Article  Google Scholar 

  28. Niimi, Y. et al. Extrinsic spin Hall effects measured with lateral spin valve structures. Phys. Rev. B 89, 054401 (2014).

    Article  Google Scholar 

  29. Arutyunov, K. Yu., Auraneva, H-P. & Vasenko, A. S. Spatially resolved measurement of nonequilibrium quasiparticle relaxation in superconducting Al. Phys. Rev. B 83, 104509 (2011).

    Article  Google Scholar 

  30. Hubler, F., Lemyre, J. C., Beckmann, D. & Lohneysen, H. v. Charge imbalance in superconductors in the low-temperature limit. Phys. Rev. B 81, 184524 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge helpful discussions with H. Adachi, S. Hikino and Y. Ohnuma. We also would like to thank Y. Iye and S. Katsumoto for the use of the lithography facilities. This work is partly supported by KAKENHI.

Author information

Authors and Affiliations

Authors

Contributions

T.W. and H.A. fabricated samples. T.W. performed measurements. Analyses were done by T.W. and Y.Omori. Manuscript was prepared by T.W., H.A., Y.N., S.T. and Y.Otani. S.T. and S.M. gave theoretical suggestions. This work was supervised by A.F., S.M. and Y.Otani.

Corresponding author

Correspondence to Y. Otani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 732 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakamura, T., Akaike, H., Omori, Y. et al. Quasiparticle-mediated spin Hall effect in a superconductor. Nature Mater 14, 675–678 (2015). https://doi.org/10.1038/nmat4276

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4276

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing